MULTÍMETRO DIGITAL

Digital Multimeter HD2500 e HD2510

* Imagem meramente ilustrativa./Only illustrative image./Imagen meramente ilustrativa.

MANUAL DE INSTRUÇÕES
Instructions Manual
Manual de Instrucciones

SUMÁRIO

1) VISAO GERAL	
2) ACESSÓRIOS	.02
3) INFORMAÇÕES DE SEGURANÇA	03
4) REGRAS PARA OPERAÇÃO SEGURA	.04
5) SÍMBOLOS ELÉTRICOS INTERNACIONAIS	05
6) ESTRUTURA DO INSTRUMENTO	06
7) SÍMBOLOS DO DISPLAY	07
8) TECLAS E CHAVE SELETORA	08
A. Chave Seletora	
B. Teclas	10
9) OPERAÇÃO DE MEDIDAS PARA DISPLAY DUPLO (HD2510	12
A. Medida AC+DC (HD2510)	12
B. Medida de Tensão	12
C. Medida de Rotação de Fase	13
D. Medida do Valores de Pico	14
10) OPERAÇÃO DE MEDIDAS	
A. Medida de Tensão DC/AC	15
B. Medida de Tensão com Filtro Passa Baixa (LPF) (HD-2510)	
C. Medida do valor de Pico "PEAK" (HD2510)	16
D. Função de medição da sequência de fase motor	
E. Medidas em LoZ (Baixa Impedância)	
F. Medida de Resistência/ Continuidade	19
G. Teste de Díodo	
H. Medida de Capacitância	23
Medida de Frequência/Duty Cycle	24
J. Medida de Temperatura (HD2500)	25
K. Medida de Corrente DC/AC	26
L. Outras Funções	27
11) ESPECIFICAÇÕES	
A. Especificações Gerais	
B. Especificações Elétricas	
12) MANUTENÇÃO	
A. Serviço Geral	
B. Troca de Bateria	
C. Troca de Fusível	
13) GARANTIA	
A. Cadastro do Certificado de Garantia	39

1) INTRODUÇÃO

Este manual de instruções cobre informações de segurança e cautelas. Por favor, leia as informações relevantes cuidadosamente e observe todas as **Advertências** e **Notas** rigorosamente.

ADVERTÊNCIA

Para evitar choques elétricos e ferimentos pessoais, leia Informações de Segurança e Regras para Operação Segura cuidadosamente antes de usar o instrumento.

Os multímetros digitais modelos HD2500 e HD2510 (daqui em diante referido apenas como instrumento) é um instrumento portátil com alta qualidade, True RMS, auto range e possui um display grande de 3 fle dígitos com uma estrutura original, altamente confiável e segura. Conta com proteção contra poeira e água IP65 e queda de 2m. O instrumento pode ser usado em medidas de tensão AC/DC, corrente AC/DC, resistência, díodo, continuidade, teste de sequência fase em motores, capacitância e frequência. A faixa de temperatura é especifica para o modelo HD2500. O modelo HD2510 destaca-se pelo teste de Duty Cycle, filtro passa baixa (LPF), Peak hold e tensão AC+DC É o instrumento portátil ideal para profissionais da área de refrigeração, manutenção em indústrias petrolíferas, químicas, automobilísticas, etc.

O produto atinge o padrão de segurança certificado pela GS da Alemanha.

2) ACESSÓRIOS

Abra a caixa e retire o instrumento. Verifique se os seguintes itens estão em falta ou com danos:

Item	Descrição	Qtde.
1	Manual de Instruções	1 peça
2	Pontas de Prova	1 par
3	Ponta termopar Tipo K (somente HD2500)	1 peça

No caso da falta de algum componente ou que esteja danificado, entre em contato imediatamente com o revendedor.

3) INFORMAÇÕES DE SEGURANÇA

Este instrumento está de acordo com os padrões poluição IEC61010-1:2010, IEC61010-2-030:2010, IEC61010-2-033:2012, IEC61010-031:2015, em grau de poluição 2, categoria de sobretensão CAT III 1000V/CAT IV 600V, dupla isolação e grau de proteção IP65.

CATEGORIA DE SOBRETENSÃO II

Equipamento da CATEGORIA DE SOBRETENSÃO II é o equipamento consumidor de energia fornecida por uma instalação fixa.

Nota - Exemplos incluem aparelhos domésticos, de escritório e laboratoriais.

CATEGORIA DE SOBRETENSÃO III

Equipamento da CATEGORIA DE SOBRETENSÃO III é o equipamento em instalações fixas.

Nota - Exemplos incluem chaves em instalações fixas e alguns equipamentos para uso industrial com conexão permanente a uma instalação fixa.

CATEGORIA DE SOBRETENSÃO IV

Equipamento da CATEGORIA DE SOBRETENSÃO IV é para uso na origem da instalação.

Nota - Exemplos incluem medidores de eletricidade e equipamento de proteção de sobrecorrente primário.

Use o instrumento somente como especificado neste manual de instruções, caso contrário a proteção proporcionada pelo instrumento pode ser comprometida.

Neste manual, uma **Advertência** identifica condições e ações que podem expor o usuário a riscos ou podem danificar o instrumento ou o equipamento em teste.

Uma **Nota** identifica as informações que o usuário deve prestar atenção especial.

4) REGRAS PARA OPERAÇÃO SEGURA

ADVERTÊNCIA

Para evitar possíveis choques elétricos ou ferimentos pessoais, danos ao instrumento ou ao equipamento em teste, siga as seguintes regras:

- Antes de usar o instrumento, inspecione o gabinete. Não utilize o instrumento se estiver danificado ou o gabinete (ou parte do gabinete) estiver removido. Observe por rachaduras ou perda de plástico. Preste atenção na isolação ao redor dos conectores.
- Inspecione as pontas de prova contra danos na isolação ou metais expostos. Verifique as pontas de prova com relação a continuidade. Troque as pontas de prova danificadas por modelos idênticos ou de mesma especificação antes de usar o instrumento.
- Não aplique mais que a tensão especificada, marcada no instrumento, entre os terminais ou entre gualquer terminal e o terra.
- A chave rotativa deve ser posicionada corretamente e nenhuma mudança de posição deve ser feita durante a medida para evitar danos ao instrumento.
- Quando o instrumento estiver trabalhando com tensão efetiva maior que 30V DC/ AC RMS, cuidado especial deve ser tomado devido ao perigo de choques elétricos.
- Utilize os terminais, função e faixa apropriados para a sua medida.
- Não utilize ou armazene o instrumento em ambientes de alta temperatura, umidade, explosivo, inflamável ou com fortes campos magnéticos.
 A performance do instrumento pode deteriorar após ser molhado.
- Ao utilizar as pontas de prova, mantenha seus dedos atrás das barreiras de proteção.
- Desconecte a alimentação do circuito e descarregue todos os capacitores antes de testar resistência, continuidade, díodo ou corrente.
- Antes de medir corrente, verifique o fusível do instrumento e desligue a alimentação do circuito antes de conectar o instrumento ao circuito.
- Troque a bateria assim que o indicador de bateria aparecer. Com uma bateria fraca, o instrumento pode produzir leituras falsas e resultar em choques elétricos e ferimentos pessoais.
- Remova as pontas de prova do instrumento e desligue-o antes de abrir seu gabinete.
- Quando efetuar reparos no instrumento, utilize somente componentes idênticos ou equivalentes aos especificados.

- O circuito interno do instrumento n\u00e3o deve ser alterado para evitar danos ao instrumento e algum acidente.
- Um pano macio e detergente neutro devem ser usados para limpar a superfície do instrumento. Nenhum produto abrasivo ou solvente deve ser usado para evitar que a superfície do instrumento sofra corrosão, danos ou acidentes.
- O instrumento é para uso interno.
- Em ambientes com fortes campos eletromagnéticos, o instrumento pode não operar nas condições normais.
- Por favor, retire a bateria quando o instrumento n\u00e4o for utilizado por muito tempo para evitar danos.
- Por favor, verifique a bateria constantemente, pois ela pode vazar quando tiver sido utilizada por algum tempo. Troque a bateria assim que o vazamento aparecer. O líquido da bateria danificará o instrumento.

5) SÍMBOLOS ELÉTRICOS INTERNACIONAIS

4	Risco de Choque Elétrico / Alta Tensão	
\triangle	Refira-se ao Manual de Instruções	
===	Medida de Tensão DC	
\sim	Medida de Tensão AC	
\simeq	AC ou DC	
→	Díodo	
-11)	Continuidade	
	Bateria	
	Equipamento protegido por Dupla Isolação	
+	Terra	
(E	Conformidade Europeia	

6) ESTRUTURA DO INSTRUMENTO

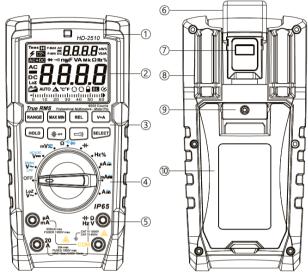


Figura 1

- 1. Sensor de Luz de Fundo Automático.
- 2. Display LCD.
- 3. Teclas de Funções.
- 4. Chave Seletora
- 5. Terminais de Entrada
- 6. Gancho para Alça
- 7. Lanterna
- 8. Suporte para as ponta de prova
- 9. Parafuso do compartimento da bateria
- 10. Suporte do gabinete

7) SÍMBOLOS DO DISPLAY

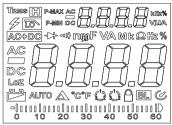


Figura 2

Símbolo	Significado	
TRMS	True RMS nas medições AC.	
	Comando de data hold.	
4	Aviso de Alta Tensão.	
LPF	Medição de tensão com filtro passa baixa (Bloqueia sinais com frequência Superior a 1KHz)	
P-MAX/ P-MIN	Medidas dos valores de Pico	
MAX-MIN	Comando de valor de medida máxima/mínima.	
→ + •••))	Teste de Díodo e Continuidade	
AC+DC	Medidas AC+DC	
AC/DC	Indicador de medida AC/DC.	
-	Indicador de leitura negativa.	
LoZ	Medida em AC de Baixa Impedância.	
	Indicador de bateria fraca.	
Auto	Comando de mudança de faixa automática.	

Δ	Modo relativo.
°C °F	Unidades de Temperatura
Ú ₃₋₂₋₁	Sentido Anti- Horário
Ú 1-2-3	Sentido Horário
	Símbolo de Identificação de Ativação de Sequência de Fase
BL	Luz de fundo automático.
mV/V	Unidades de tensão: Milivolt, Volt.
μA/mA/A	Unidades de corrente: Microampere, Miliampere, Ampere.
Ω/kΩ/ΜΩ	Unidades de resistência: Ohm, quilo-Ohm, MegaOhm.
nF/µF/mF	Unidades de capacitância: Nanofarad, Microfarad, Milifarad.
Hz/kHz/MHz	Unidades de frequência: Hertz, quilo-Hertz, megahertz.
%	Medida de duty cycle.
Ø	Comando de desligamento automático.

8) TECLAS E CHAVE SELETORA

A. Chave Seletora

Posição da Chave Rotativa	Função
∨ ~ ∨ = ∀≅≅	Medida de tensão AC ou DC.
Ω	Medida de resistência.
-11)	Teste de continuidade.
*	Teste de díodo.

⊣ €	Medida de capacitância.	
Hz	Medida de frequência.	
%	Medida de duty cycle. (Somente HD2510)	
°C°F	Medidas de Temperatura. (Somente HD2500)	
μA <u>≈</u> mA <u>≈</u> A <u>≈</u>	Medida de corrente AC/DC.	
LPF	Filtro passa Baixa para medidas de tensão AC. (Somente HD2510)	
LoZ	Medidas de Tensão em Baixa Impedância (Tensão AC).	
MOTOR	Função Sequêncimetro e Fasímetro	
AC+DC	Medidas AC+DC	
OFF	Posição para desligar o instrumento.	

B. Teclas

1. Tecla RANGE

Esta tecla pode ser usada para selecionar a mudança de faixa manual/ automática. Se a tecla é pressionada por mais de 2 segundos ou se girar a chave seletora, o instrumento sai do modo Manual. A tecla RANGE também serve para alternar entre as faixas, da menor faixa para a maior.

Nota

 Aplicável apenas para medida de tensão AC/DC, corrente AC/DC e resistência.

2. Tecla MAX/MIN

Esta tecla pode ser usada para entrar automaticamente no modo de mudança de faixa manual. Neste caso, a função de desligamento automático é desabilitada e o valor máximo é exibido. Após pressionar a tecla novamente, o valor mínimo será exibido. Ao pressionar pela terceira vez, será exibido o valor de máximo-mínimo. Ao pressionar a tecla por mais de 2 segundos ou girar a chave seletora, o instrumento sairá do modo de máximo/mínimo

Nota

 Aplicável apenas para medida de tensão AC/DC, corrente AC/DC, resistência

3. Tecla REL

Pressione o botão uma vez para obter o primeiro valor de leitura como referência, esse valor obtido será descontado ao realizar a próxima medição. Para sair basta pressionar o botão novamente.

Nota

 Aplicável apenas para medida de tensão AC/DC, corrente AC/DC, resistência e capacitância.

4. Tecla A-Off

Esta tecla ativa luz de fundo automático (acende o backlight em ambientes escuros e apaga em ambientes com mais luminosidade após 30 segundos). Para sair da função A-OFF teclar OFF enquanto estiver com a luz acesa. Para ativar a função desligar e ligar o instrumento.

5. Tecla Light

Esta tecla pode ser usada para ligar e desligar a lanterna.

6. Tecla Hz/%

Esta tecla pode ser usada para alterar entre medida de frequência e Duty Cycle.

7. Tecla SELECT

Esta tecla pode ser usada para selecionar uma função quando se tem duas funções na posição da chave rotativa. Por exemplo: no modo "AC" pressione a tecla e o display exibirá "DC". Na escala de resistência pressione SELECT para alternar para a função continuidade, etc.

Ao manter pressionado SELECT ao mesmo tempo em que liga o instrumento desabilita o desligamento automático.

8. Tecla HOLD

Esta tecla pode ser usada para congelar um valor exibido. Neste caso, o display exibirá """. Pressionando a tecla novamente, o instrumento volta a exibir a leitura atual do instrumento.

9. Tecla PEAK (Somente HD2510)

Habilita a medida de tensão de pico Vp-p e a medida de corrente de pico. Corrente de Pico Ip-p: Capta o valor máximo de corrente durante a medida (PEAK-MAX/PEAK -MIN).

Nota:

 Esta função tem o mesmo modo de gravação que a de MAX MIN, mas a maior diferença entre eles é que o tempo de resposta para o registro de pico (PEAK) é muito mais curto (250µs).

9) OPERAÇÃO DE MEDIDAS PARA DISPLAY DUPLO (SOMENTE HD2510)

Antes de realizar qualquer medida, verifique as baterias. Se o display exibir o símbolo "la "vazio, será necessária a troca das baterias. Preste atenção no símbolo "\tilde{\tilde{L}}" entre os terminais de entrada. Este símbolo indica os valores de medida que não devem ser ultrapassados, de acordo com a especificação do instrumento.

A. Medida AC+DC (somente HD2510)

No modo, pressione o botão "SELECT" para habilitar o modo AC+DC: O display principal irá mostrará o valor AC+DC, o display secundário irá alternar automaticamente o valor ACV e o valor DCV com um tempo de intervalo de 2s.

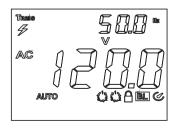


B. Medida de Tensão

No modo ACV, o display principal irá mostrar o valor de tensão AC, e o display secundário irá mostrar a frequência do sinal medido. Pressionando o botão "SELECT" a função do filtro passa baixa é habilitada impedindo a medida de sinais com frequências superiores a 1KHz (eliminação de ruídos).

C. Medida de Rotação de Fase.

No modo de tensão ACV, mantenha pressionado por mais de 2s o botão "SELECT" para habilitar a função de direção de rotação do motor. O visor principal mostra o valor atual da tensão e o display secundário mostra a frequência de operação.


Quando o motor estiver desabilitado, pressione brevemente o botão SELECT uma vez para habilitar a medida da seguência de fases.

Pressione prolongadamente o botão SELECT (mais de 2 segundos) para sair das funções do motor.

Passos: Medição de sequencia de fase (condição de detecção: acima da AC 80V, a frequencia é de 40Hz a 80Hz, e continuará a aguardar se o alcance excedido).

- a) Em modo ACV, pressione e segure o botão SELECT por mais de 2 segundos, quando automaticamente o display irá mudar para a faixa de 600,0V e aguardando a entrada de sinal. O instrumento continuará esperando se não houver nenhuma entrada.
- b) Depois que a primeira sequencia de fase é medida e bloqueada, insira a ponta em outra fase, a tela LCD exibirá 1→ 2→3 ou 3→2→1; se não mover a ponta para mudar o sinal de entrada, ele expirará em 5 segundos. Sendo necessário reiniciar o procedimento.
- c) Pressione o botão SELECT por pelo menos 2 segundos para sair automaticamente do modo de sequencia de fase.

Pressione o botão SELECT (durante pelo menos 2 segundos) para sair da função

D. Medida do Valores de Pico


Com o instrumento na escala ACV pressione o Botão PEAK para habilitar o modo de leitura de pico: o display principal irá mostrar o valor ACV, e o display secundário irá mostrar P-MAX. Pressionando rapidamente o botão PEAK, "P-MAX" e "P-MIN" será mostrado no display respectivamente. Mantenha pressionado o botão PEAK por mais de 2 segundos para sair da função de medição de pico.

10) OPERAÇÃO DE MEDIDAS

A. Medida de Tensão DC/AC

M ADVERTÊNCIA

Figura 2

Para evitar ferimentos pessoais ou danos ao instrumento a partir de choques elétricos, por favor não tente medir tensões maiores que 1000V DC/750V AC RMS

Para medir tensão DC/ AC, conecte o instrumento de acordo com as sequintes instrucões:

- 1. Insira a ponta de prova vermelha no terminal $V/\Omega/Hz$ e a ponta de prova preta no terminal COM.
- 2. Posicione a chave rotativa em mV ou V; a medida DC será o padrão inicial. Pressione a tecla SELECT para selecionar entre os modos de medida DC e AC
- 3. Conecte as pontas de prova em paralelo com o objeto a ser medido. O valor medido será exibido no display.

B. Medida de Tensão com Filtro Passa Baixa (LPF) somente para HD2510

- 1. Conecte o instrumento em paralelo com o dispositivo em teste.
- 2. Na faixa de ACV, pressione o botão SELECT para habilitar o filtro passa baixa, este filtro irá bloquear sinais de tensão com frequência superior a 1kHz. Como mostrado na figura abaixo, o filtro de passa baixa pode medir o sinal de uma onda senoidal combinado gerado pelo inversor e motor de frequência variável.

C. Medida do valor de Pico "PEAK" somente HD2510

- 1. Conecte o instrumento em paralelo com o dispositivo em teste.
- 2. Pressione o botão PEAK para halilitar a função de detecção de pico. O tempo de resposta da captura é 250µs, ele pode medir com precisão os valores transitórios de P-MAX e P-MIN. Pressione prolongadamente o botão PEAK para sair da medicão do pico.

D. Medida de Rotação de Fase

- 1. Conecte o instrumento em paralelo com o dispositivo em teste.
- 2. Na escala ACV, mantenha pressionado o botão SELECT por 2 segundos para habilitar a função de rotação de fase, neste momento, a tela LCD mostrará o símbolo "\textsign" piscando.
- 3. Defina a primeira fonte de tensão para o terminal COM, conecte a ponta preta em L3, a ponta vermelha medirá L1 pela primeira vez. Aguarde até que o "■" no LCD esteja bloqueado, mude a ponta vermelha para L2 dentro de 5 segundos, agora o símbolo 1-2-3 será exibido no LCD, indicando a sequencia de fase de rotação horária.
- 4. Defina a primeira fonte de tensão para o terminal COM, conecte a ponta preta em L3, a ponta vermelha medirá L2 pela primeira vez. Aguarde até que o "
 on LCD esteja bloqueado, mude a ponta vermelha para L1 dentro de 5 segundos, agora o símbolo 3-2-1 será exibido no LCD, indicando a sequencia de fase de rotação anti-horária.

Durante a medição, pressione brevemente o botão SELECT uma vez para reiniciar a medida de rotação de fase. Pressione prolongadamente o botão SELECT durante pelo menos 2 segundos novamente para sair da função de medição da rotação da fase.

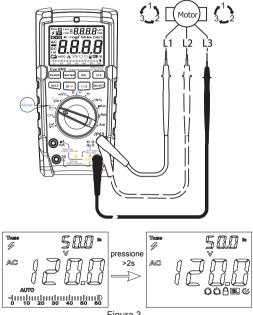


Figura 3

Nota

- 1) Condição de seguencia de fase: acima de 80VAC, freguencia de 40Hz a 80Hz, o símbolo "a" piscando será exibido na tela LCD e continuará aguardando se o alcance da resposta de frequencia for excedido.
- 2) O modo de decodificação anti-interferência multi-harmônico é definido no chip de produtos HD2510. O sinal de interferência de alta frequencia

será filtrado por um circuito de filtro especial construído no chip, isso será adequado para a medição em campo de tensão de frequencia variável. O tempo de bloqueio da sequência da fase de medição é aproximadamente mais ou menos 10s.

3) Ao medir os produtos HD2500 em condição de frequencia variável, devido ao impacto do PWM de harmônicos múltiplos, a sequencia de fase de medição no tempo de bloqueio é muito mais lenta (cerca de 30s mais ou menos) e a faixa de frequencia é adequada somente de 50Hz a 80Hz, e o estado instável da medida da sequencia de fase pode ocorrer.

E. Medidas em LoZ (Baixa Impedância)

- 1. Conecte o instrumento em paralelo com o dispositivo em teste.
- 2. Para eliminar a tensão adjacentes, a função Loz (Low Impedance é de cerca de 300kΩ) do medidor fornece baixa impedância em todo o circuito do condutor, de modo a obter um valor de medição muito mais preciso. Gire o interruptor de rotação para LoZ, o medidor exibe as tensões de CA na tela principal.

⚠ ADVERTÊNCIA

Para evitar ferimentos pessoais ou danos ao instrumento a partir de choques elétricos, por favor não tente medir tensões maiores que 1000V DC/750V AC RMS.

E. Medida de Resistência/ Continuidade

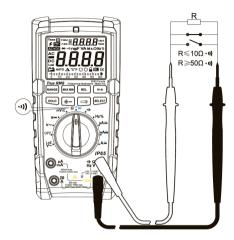


Figura 4

M ADVERTÊNCIA

Para evitar danos ao instrumento ou ao dispositivo em teste, desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes da medida de resistência.

Não insira tensões acima de 60V DC/30V AC.

- 1. Para medir resistência insira a ponta de prova vermelha no terminal $V/\Omega/Hz$ e a ponta de prova preta no terminal COM.
- Posicione a chave rotativa em Ω. A medida de resistência (Ω) é o padrão inicial, caso não esteja na função medida de resistência, pressione a tecla SELECT para alternar e selecionar a medida de Ω.
- Conecte as pontas de prova sobre o objeto a ser medido. O valor medido será exibido no display.

- Para teste de Continuidade insira a ponta de prova vermelha no terminal V/Ω/Hz e a ponta de prova preta no terminal COM.
- 5. Posicione a chave rotativa em Ω . A medida de resistência (Ω) é o padrão inicial, pressione a tecla SELECT para alterar para teste de continuidade.
- Conecte as pontas de prova nos pontos onde se deseja verificar a continuidade. Se a resistência for menor que 10 Ohms o alarme soará, se for maior que 50 Ohms será considerado circuito aberto.

Nota

- O display exibirá "OL" quando a resistência medida for de circuito aberto ou o valor da resistência for maior que a máxima faixa do instrumento.
- Em medidas de baixa resistência, as pontas de prova podem adicionar 0,1Ω a 0,2Ω de erro na medida de resistência. Para obter leituras precisas, curto-circuite os terminais de entrada e use a função de medida relativa (tecla REL Δ), o instrumento considera o valor de resistência das pontas de prova como sendo o valor inicial, zero da medida, dessa forma não será considerada no resultado da medida.
- Verifique se as pontas de prova apresentam qualquer perda ou outras razões que possam causar um valor de resistência maior que 0,5Ω ao curto-circuitar as pontas de prova.
- O instrumento pode demorar alguns segundos para estabilizar uma medida de alta resistência, o que é normal neste tipo de medida.

G. Teste de Diodo

Figura 5

⚠ ADVERTÊNCIA

Para evitar danos ao instrumento ou ao dispositivo em teste, desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes do teste de díodo.

Não insira tensões acima de 60V DC/30V AC.

Para teste de díodo, conecte o instrumento de acordo com as seguintes instruções:

- 1. Insira a ponta de prova vermelha no terminal $V/\Omega/Hz$ e a ponta de prova preta no terminal COM.
- 2. Posicione a chave rotativa em → para selecionar a medição de díodo
- 3. Para a leitura da queda de tensão direta de qualquer componente semicondutor, coloque a ponta de prova vermelha no ânodo do componente e a ponta de prova preta no cátodo do componente. O valor medido será exibido no display.

Nota

- Em um circuito, um díodo bom ainda deve produzir uma leitura de queda de tensão direta de 0,5V a 0,8V; entretanto, a leitura da queda de tensão reversa pode variar dependendo da resistência de outros caminhos entre as extremidades das pontas de prova.
- Conecte as pontas de prova aos terminais apropriados como dito acima para evitar erros de leitura. O display exibirá "OL" para indicar que o díodo em teste está em aberto ou com polaridade invertida. A unidade de medida da tensão de condução do díodo é Volt (V). Quando polarizado diretamente, mostra as leituras das quedas de tensão direta.
- Quando o teste de díodo for completado, desfaça a conexão entre as pontas de prova e o circuito em teste e remova as pontas de prova dos terminais do instrumento.

H. Medida de Capacitância

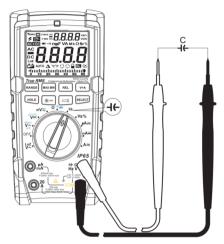


Figura 6

⚠ ADVERTÊNCIA

Para evitar danos ao instrumento ou ao dispositivo em teste, desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes da medida de capacitância. Utilize a função de medida de tensão DC para confirmar que o capacitor está descarregado.

Para medir capacitância, conecte o instrumento de acordo com as seguintes instruções:

- 1. Insira a ponta de prova vermelha no terminal $V/\Omega/Hz$ e a ponta de prova preta no terminal COM.
- Posicione a chave rotativa em + para selecionar a medição de capacitância.
- 3. Conecte as pontas de prova sobre o objeto a ser medido. O valor medido é mostrado no display.

Nota

- O display exibirá OL para indicar que o capacitor testado está em curto ou excede o valor da maior faixa.
- Mesmo quando não houver nada conectado o instrumento poderá mostrar uma leitura fixa (referente a capacitância intrínseca do instrumento), para esse valor e para medir um valor pequeno de capacitância, utilize o modo REL para remover a capacitância residual das pontas de prova. Para minimizar o efeito da capacitância armazenada nas pontas de prova, as mesmas devem ser as mais curtas possíveis.
- Pode-se levar um tempo maior para estabilizar a leitura ao testar capacitores de alto valor.
- Quando a medida de capacitância for completada, desfaça a conexão entre as pontas de prova e o circuito em teste, e remova as pontas dos terminais do instrumento.

I. Medida de Frequência/Duty Cycle

Figura 7

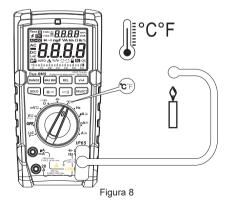
↑ ADVERTÊNCIA

Para evitar danos ao instrumento ou ao dispositivo em teste, não insira tensões acima de 60V DC/30V AC.

Para medir frequência, conecte o instrumento como a seguir:

- 1. Insira a ponta de prova vermelha no terminal $V/\Omega/Hz$ e a ponta de prova preta no terminal COM.
- Posicione a chave rotativa em Hz/%; a medida de frequência será o padrão inicial.
- Conecte as pontas de prova sobre o objeto a ser medido. O valor medido será exibido no display.
- 4. Para selecionar a função duty cycle, pressione a tecla SELECT.

Nota


 Quando a medida de frequência for completada, desfaça a conexão entre as pontas de prova e o circuito em teste, em seguida remova as pontas de prova dos terminais do instrumento.

J. Medida de Temperatura (somente HD2500)

1. Sensor de temperatura: Somente para termopares de tipo K. Se "OL" for exibido depois de ligar o medidor, conecte o sensor de temperatura tipo K para medir ° C (Celsius) ou ° F (Fahrenheit).

Nota

 O termopar do tipo ponto k fornecido pelos acessórios é apenas adequado para a medição de temperatura abaixo de 230 °C / 446 °F.

K. Medida de Corrente DC/AC

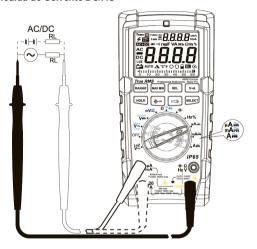


Figura 9

ADVERTÊNCIA

Se o fusível se queimar durante uma medida, pare de utilizar o instrumento, pois pode ser danificado ou o usuário sofrer ferimentos. Utilize os terminais, função e faixa de medida apropriados. Quando as pontas de prova estiverem conectadas aos terminais de corrente, não coloque-as em paralelo com nenhum circuito.

Para medir corrente DC/AC, conecte o instrumento de acordo com as seguintes instruções:

- Desligue a alimentação do circuito e descarregue todos os capacitores de alta tensão.
- 2. Insira a ponta de prova vermelha no terminal mAµA e a ponta de prova preta no terminal COM e posicione a chave rotativa em µA^{₹₹}, mA^{₹₹} ou insira a ponta de prova vermelha no terminal 20A e a ponta de prova preta no terminal COM e posicione a chave rotativa em A^{₹₹}.

- O padrão inicial do instrumento é o modo de medida de corrente DC.
 Para alternar entre as funções de medidas DC e AC, pressione a tecla SFI FCT
- Interrompa o caminho da corrente a ser testada. Conecte a ponta de prova vermelha no lado positivo do circuito interrompido e a ponta de prova preta no lado negativo.
- Ligue a alimentação do circuito. O valor da corrente medida é exibido no display.

Nota

- Se o valor de corrente a ser medido for desconhecido, use a maior faixa e reduza a faixa passo a passo até obter uma leitura satisfatória.
- O fusível de 11A encontra-se dentro do terminal de entrada. Não conecte as pontas de prova em paralelo com qualquer circuito durante a medida de corrente, pois poderá causar danos ao instrumento e ferimentos ao usuário
- Por segurança, o tempo de cada medição de corrente acima de 10A deve ser menor que 30 segundos, e o intervalo de tempo entre duas medidas deve ser de pelo menos 15 minutos.
- Ao medir corrente AC em linha viva, é possível selecionar Hz/% para medir a frequência/duty cycle da corrente.
- Quando a medida de corrente for completada, desfaça a conexão entre as pontas de prova e o circuito em teste, e remova as pontas de prova dos terminais do instrumento.
- No modelo HD2510 quando pressionada a tecla "SELECT" o modo L-Pass Filter é habilitado inibindo sinais maiores que 1KHz.

L. Outras Funções

1. Auto Power Off

O instrumento será desligado automaticamente para economizar a bateria caso nenhuma alteração seja feita na chave seletora em um período de 15 minutos. Sob o estado de desligamento automático, pressione qualquer tecla para que o instrumento seja ativado novamente. Também é possível reiniciar o instrumento girando a chave seletora para OFF e em seguida para qualquer outra função.

Mantenha pressionado SELECT enquanto liga o instrumento e o mesmo emitirá um alarme sonoro alertando que a função de auto desligamento foi desabilitada. Ao reiniciar o instrumento, a função de desligamento automático é habilitada novamente.

2. Buzzer

O sinal sonoro será emitido quando a tensão DC medida for maior que 1000V,a tensão AC maior que 750V ou a Corrente DC/AC maior que 20A.

3. Indicação de Bateria Fraça

Quando a tensão da bateria interna estiver abaixo de 7,5V o símbolo de bateria fraca "Ia" " será exibido no display, troque a bateria para evitar medições errôneas.

11) ESPECIFICAÇÕES

A. Especificações Gerais

- Display: LCD 3 5/g dígitos, 6000 contagens.
- Indicação de Sobre faixa: OL.
- Taxa de Atualização: 3 vezes por segundo.
- Mudança de Faixa: Manual e Automática.
- Indicação de Polaridade: Automática.
- Indicador de Bateria Fraça:
- Proteção por Fusível para o Terminal de Entrada mAμA:
 Fusível de 0.6Α/1000V. ø6x32mm, acão rápida.
- Temperatura: Operação: 0°C ~ 40°C (32°F a 104°F).
 Armazenamento: -10°C a 50°C (14°F a 122°F).
- Umidade Relativa: ≤75% @ 0°C a 30°C ≤50% @ 31°C a 40°C
- Altitude de Operação: abaixo de 2000m.
- Tipo de Bateria: 9V 6F22.
- Compatibilidade eletromagnética: Em um campo de radiofrequência (RF) < 1V/m: precisão total = precisão especificada + 5% da faixa. Não especificado para índices de RF de 1V/m e maiores que 1V/m.
- Segurança/Conformidade: IEC61010-1:2010, IEC61010-2-030:2010, IEC61010-2-033:2012, IEC61010-031:2015, Categoria de Sobretensão CAT III 1000V/CAT IV 600V e dupla isolação.
- Grau de Poluição: 2.
- Grau de proteção: IP65 (à prova de poeira e protegido contra jatos de áqua).
- **Dimensões:** 195(A) x 95(L) x 58(P)mm.
- Peso: Aproximadamente 473g (incluindo bateria).

B. Especificações Elétricas

Precisão: ±(a%leitura+dígitos), garantido por 1 ano. Temperatura de operação: 23°C±5°C. Umidade relativa: <75%.

A. Tensão DC

Faixa	Resolução	Precisão
600mV	0,1mV	±(0,7%Leit.+3D)
6V	0,001V	±(0,5%Leit.+3D)
60V	0,01V	
600V	0,1V	±(0,7%Leit.+3D)
1000V	1V]
6V~60V*		±(1,5%Leit.+4D)AC+DC

^{*} Somente HD2510

Observações:

- Impedância de entrada: Aprox. 10MΩ (Haverá uma instabilidade no display no caso das faixas de mV).
- Máxima tensão de entrada: ±1000VDC.

B. Tensão AC

Faixa	Resolução	Precisão
600mV	0,1mV	±(1,0%Leit.+4D)
6V	0,001V	±(0,7%Leit.+3D)
60V	0,01V	
600V	0,1V	±(1,0%Leit.+3D)
750V	1V	
LPF 6V~750V*		±(2,0%Leit.+3D)
PEAK HOLD*	tempo de captura 250µs	±(2,0%Leit.+100D)
AC LoZ 600V	0,1V	±(2,0%Leit.+3D)
Motor 600V	0,1V	±(1,5%Leit.+5D)

^{*} Somente HD2510

Observações:

- Tempo de estabilização na função LoZ: 1 minuto.
- Impedância de entrada: LoZ $300k\Omega$ demais entradas aprox. $10M\Omega$.
- Máxima tensão de entrada: 750VAC RMS.

- Frequência de resposta: HD2500 45Hz ~ 1kHz e HD2510 45Hz~5kHz.
- Valores True RMS são aplicáveis de 5% a 100% da faixa com uma leitura residual de curto-circuito permitida de < 10 dígitos.
- O fator de crista em AC pode ser de até 3,0, exceto em 750V onde pode ser até 1.5.

Forma de onda não senoidal

Onda com fator de crista de 1.0 a 2.0 deve ser adicionado 1%

Onda com fator de crista de 2,0 a 2,5 deve ser adicionado 2,5%

Onda com fator de crista de 2.5 a 3.0 deve ser adicionado 4%

• Quando efetuar medidas em sinais maiores a 5kHz acrescentar 5 digitos.

C. Corrente DC

Faixa	Resolução	Precisão
600μΑ	0,1μΑ	
6000μΑ	1μΑ	1/0 99/1 ait 13D)
60mA	0,01mA	±(0,8%Leit.+3D)
600mA	0,1mA	
6A	0,001A	±(1%Leit.+3D)
20A	0,01A	±(1,2%Leit.+5D)

Observações:

- Valores True RMS são aplicáveis de 5% a 100% da faixa com uma leitura residual de curto-circuito permitida de < 2 dígitos.
- Proteção de Sobrecarga

Entrada para mA: Fusível 0,6A/1000V φ6x32mm.

Entrada para 20A: Fusível 11A/1000V φ10x38mm.

D. Corrente AC

Faixa	Resolução	Precisão
600μΑ	0,1μΑ	
6000μΑ	1μΑ	1/10/1 ait 13D)
60mA	0,01mA	±(1%Leit.+3D)
600mA	0,1mA	
6A	0,001A	±(1,2%Leit.+3D)
20A	0,01A	±(1,5%Leit.+5D)

Observações:

- Proteção de Sobrecarga
 - Entrada para mA: Fusível 0,6A/1000V φ6x32mm.
 - Entrada para 20A: Fusível 11A/1000V φ10x38mm.
- Frequência de resposta: HD2500 45Hz ~ 1kHz e HD2510 45Hz~5kHz.

- Exibe o valor em True RMS.
- Valores True RMS s\u00e3o aplic\u00e1veis de 5\u00b8 a 100\u00b8 da faixa com uma leitura residual de curto-circuito permitida de < 2 d\u00edgitos.
- O fator de crista em AC pode ser de até 3,0.
- Medição de corrente de 10~20A AC/DC devem ser feitas em até 30 segundos, para ser feito uma nova medição é recomendável esperar 15 minutos de intervalo

E. Resistência

Faixa	Resolução	Precisão
60Ω	0,01Ω	±(1%Leit.+2D)
600Ω	0,1Ω	±(170Leit.+2D)
6kΩ	1Ω	
60kΩ	10Ω	±(0,8%Leit.+2D)
600kΩ	100Ω	
6ΜΩ	1kΩ	±(1,2%Leit.+3D)
60MΩ	10kΩ	±(2,5%Leit.+5D)

Observações:

- Proteção de Sobrecarga: 1000V.
- Valor medido = valor exibido valor de curto-circuito das pontas de prova.
- A faixa de 60Ω é valida somente para o modelo HD2500.

G. Capacitância

Faixa	Resolução	Precisão
6nF	1pF	Com a função REL: ±(3%Leit.+10D)
60nF~600μF	10pF~0,1μF	±(3%Leit.+5D)
6mF~60mF	1μF~10μF	±5%Leit

Observações:

- Proteção de Sobrecarga: 1000V.
- Para capacitância ≤1µF, é recomendado o uso da função REL para assegurar a precisão da medida.

H. Frequência/Duty Cycle

Faixa	Resolução	Precisão	
600Hz~40MHz*	0,01Hz ~ 0,01MHz	1/0 10/1 oit 14D)	
100Hz ~ 40MHz**		±(0,1%Leit.+4D)	
0,1% ~ 99,9%**	0,1%	±(2%Leit.+5D)	

^{*} HD2500

Observações:

• Proteção de Sobrecarga: 1000V.

Amplitude de entrada: (nível DC é zero)
 ≤100kHz: 200mVrms ≤ a ≤ 30Vrms

>100kHz ~ 1MHz: 600mVrms < a < 30Vrms

>1MHz ~ 10MHz: 1Vrms ≤ a ≤ 30Vrms

>10MHz: 1.8 Vrms ≤ a ≤ 30Vrms

• Duty cycle: aplicável apenas para medidas ≤ 10kHz.

• Sensibilidade de entrada é >2Vpp

• Frequência ≤ 1kHz Duty Cycle 10%~95%

• Frequência > 1kHz Duty Cycle 30%~70%

. Teste de Diodo/Continuidade

Faixa	Resolução	Observações
-11)	0,1Ω	Acima de 50Ω, o alarme sonoro não é ativado. O alarme sonoro é ativado quando o objeto medido está com boa condutividade (resistência ≤10Ω).
→	1mV	Tensão de circuito aberto por volta de 3,0V. O valor de queda de tensão de uma junção PN de silício costuma ser entre 0,5 ~ 0.8V.

Observação:

• Proteção de Sobrecarga: 1000V.

^{**} HD2510

J. Medida de Temperatura

Faixa	Resolução	Precisão
-40°C ~ 0°C	0,1°C	±(4°C)
>0°C ~ 600°C	0,1°C	±(1,5%Leit.+4°C)
>600°C ~ 1000°C	1°C	±(2,0%Leit.+4°C)
-40°F ~ 32°F	0,1°F	±(5°F)
>32°F ~ 990°F	0,1°F	±(2,0%Leit.+5°F)
>990°F ~ 1832°F	1°F	±(2,5%Leit.+5°F)

Observação:

- Proteção de Sobrecarga: 1000V.
- O termopar do tipo ponto k (níquel-cromo-níquel-silício) fornecido pelos acessórios é apenas adequado para a medição de temperatura abaixo de 230 °C / 446 °F.

12) MANUTENÇÃO

Esta seção fornece informações de manutenção básicas incluindo instruções de troca de bateria e fusível.

≜ ADVERTÊNCIA

Não tente reparar ou efetuar qualquer serviço em seu instrumento, a menos que esteja qualificado para tal tarefa e tenha em mente informações sobre calibração, testes de performance e manutenção. Para evitar choque elétrico ou danos ao instrumento, não deixe entrar água dentro do instrumento.

A. Serviço Geral

- Periodicamente limpe o gabinete com pano macio umedecido em detergente neutro. N\u00e3o utilize produtos abrasivos ou solventes.
- Limpar os terminais com cotonete umedecido em detergente neutro quando a sujeira ou a umidade estiverem afetando as medidas.
- Desligue o instrumento quando este não estiver em uso.
- Retire a bateria quando não for utilizar o instrumento por muito tempo.
- Não utilize ou armazene o instrumento em locais úmidos, com alta temperatura, explosivos, inflamáveis e fortes campos magnéticos.
- Caso seja necessário efetuar a inspeção ou manutenção do instrumento, entre em contato com uma assistência técnica autorizada.
- Ao notar alguma condição anormal no instrumento, interrompa o uso e encaminhe-o a uma assistência técnica autorizada.

B. Troca de Bateria

⚠ ADVERTÊNCIA

Para evitar falsas leituras que podem levar a um possível choque elétrico ou ferimentos pessoais, troque a bateria assim que o indicador de bateria fraca aparecer.

Assegure-se de que as pontas de prova estejam desconectadas do circuito em teste antes de abrir o instrumento.

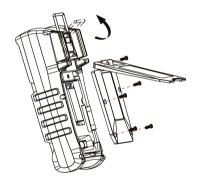


Figura 10

A bateria deverá ser substituída quando o display exibir o símbolo de bateria fraca " ar ". Caso contrário, a precisão da medida será afetada. Para trocar a bateria:

- Posicione a chave rotativa em OFF para desligar o instrumento e remova todas as conexões dos terminais de entrada.
- Retire os parafusos da base do suporte inclinável e separe-a do gabinete inferior.
- 3. Remova a bateria do compartimento da bateria.
- 4. Substitua a bateria por uma nova de 9V.
- 5. Encaixe o compartimento da bateria e reinstale os parafusos.

C. Troca de Fusível

ADVERTÊNCIA

Para evitar choque elétrico ou arcos, ferimentos pessoais ou danos ao instrumento, utilize SOMENTE fusíveis especificados.

Para trocar o fusível do instrumento:

- Posicione a chave rotativa em OFF para desligar o instrumento e remova todas as conexões dos terminais de entrada.
- Retire os parafusos da base do suporte inclinável e separe-a do gabinete inferior.
- 3. Separe o gabinete inferior do superior.
- Retire o fusível soltando uma das pontas cuidadosamente e depois a outra ponta e então retire o fusível do soquete.
- Instale SOMENTE fusíveis de especificação e tipo idênticos aos originais, e se assegure que o fusível fique fixo firmemente no soquete.
- 6. Encaixe o gabinete inferior no gabinete superior e reinstale os parafusos.
- Recoloque o suporte inclinável no gabinete inferior e reinstale os parafusos

Nota

Fusível F1: 0,6A/1000V, φ6x32mm
 F2: 11A/1000V, φ10x38mm

O instrumento foi cuidadosamente ajustado e inspecionado. Se apresentar problemas durante o uso normal, será reparado de acordo com os termos da garantia.

GARANTIA

SÉRIE Nº

MODELO HD2500/HD2510

- 1- Este certificado é válido pelo prazo de 90 (noventa) dias de garantia legal, mais 9 (nove) meses de garantia adicional, totalizando 12 meses de garantia, contados a partir da emissão da nota fiscal.
- 2- Será reparado gratuitamente nos seguintes casos:
 - A) Defeitos de fabricação ou danos que se verificar, por uso correto do aparelho no prazo acima estipulado.
 - B) Os serviços de reparação serão efetuados somente no departamento de assistência técnica por nós autorizado.
 - C) Aquisição for feita em um posto de venda credenciado da Minipa.
- **3-** A garantia perde a validade nos seguintes casos:
 - A) Mau uso, alterado, negligenciado ou danificado por acidente ou condições anormais de operação ou manuseio.
 - B) O aparelho foi violado por técnico não autorizado.
- 4- Esta garantia não abrange fusíveis, pilhas, baterias e acessórios tais como pontas de prova, bolsa para transporte, termopar, etc.
- 5- Caso o instrumento contenha software, a Minipa garante que o software funcionará realmente de acordo com suas especificações funcionais por 90 dias. A Minipa não garante que o software não contenha algum erro, ou de que venha a funcionar sem interrupção.
- **6-** A Minipa não assume despesas de frete e riscos de transporte.
- 7- O cadastramento do termo de garantia deve ser feito pelo e-mail: garantias@minipa.com.br.

	e

Endereço:	Cidade:
Estado:	Fone:
Nota Fiscal N°:	Data:
N° Série do instrumento:	
Nome do Revendedor:	

A. Cadastro do Certificado de Garantia

O cadastramento pode ser feito através de um dos meios a seguir:

- Correio: Envie uma cópia do certificado de garantia devidamente preen-

chido pelo correio para o endereço.

Minipa do Brasil Ltda.

At: Serviço de Atendimento ao Cliente Av. Carlos Liviero, 59 - Vila Liviero CEP: 04186-100 - São Paulo - SP

- e-mail: Envie os dados de cadastro do certificado de garantia através

do endereço sac@minipa.com.br.

IMPORTANTE

Os termos da garantia só serão válidos para produtos acompanhados com o original da nota fiscal de compra do produto. Para consultar as Assistências Técnicas Autorizadas acesse:

http://www.minipa.com.br/servicos/assistencia-tecnica/rede-de-autorizadas

Manual sujeito a alterações sem aviso prévio. Para consulta da última versão do manual consulte nosso site.

Revisão: 02

Data Emissão: 03/03/2021

www.minipaelectric.com.br MINIPA DO BRASIL LTDA. Av. Carlos Liviero, 59 - Vila Liviero 04186-100 - São Paulo - SP - Brasil

MINIPA DO BRASIL LTDA.

Rua Morro da Graça, 371 - Jardim Montanhês, 30730-670 -Belo Horizonte - MG - Brasil

MINIPA DO BRASIL LTDA.

Av. Santos Dumont. 4401 - Zona Industrial 89219-730 - Joinville - SC - Brasil

Timito® do Brasil Ltda. Todos os direitos reservados / all rights reserved / todos los derechos reservados