B KIKUSUI Part No. IB035082-1 Dec 2020

PWR401ML

PWR801ML

PWR801H

PWR401H

User's Manual

Regulated DC Power Supply

PWR-01 Series

400W model

PWR401L PWR401MH

800W model

PWR801L PWR801MH

1200W model

PWR1201L PWR1201ML PWR1201MH PWR1201H

2000W model

PWR2001LPWR2001MLPWR2001MHPWR2001H

Component Names 8 Preparation 13 Connecting the Power Cord 14 Load Considerations 19 Selecting the Load Cables 21 **Output Terminal Insulation 23** Connecting to the Output Terminals 25 Turning the Power On 32 **Remote Sensing Function 34** Basic Features 37 Measured Value Display and Setting Display 38 Panel Operations 40 **Output Operation 41 Operation Overview 45** CV Power Supply and CC Power Supply 47 Using the PWR-01 as a CV or CC Power Supply 49 Protection Functions 50 **CONFIG Settings 60 Preset Memory Function 77** Locking Panel Controls (Key Lock) 78 **CONFIG Shortcut Function 79** Switching from Remote Mode to Local Mode 80 Advanced Features 81 Bleeder Circuit Function 82 Variable Internal Resistance Function 84 Sequence Function 85 Synchronized Operation 86 External Control 89 Product Operation 90 About the J1/ J2 Connectors 91 Notes for Connecting External Voltage (Vext) 95 **Output Voltage Control 97 Output Current Control 99** Controlling the Output On and Off States 101 Controlling Output Shutdown 103 Controlling the Clearing of Alarms 104 External Monitoring 105 Parallel/ Series Operation 107 Master-Slave Parallel Operation 108 Series Operation 114 Maintenance 119 Calibration 120 Cleaning 122 Specifications 123 400W model 125 800W model 128 1200W model 131

> 2000W model 134 Common Specifications 137

> > Appendix143

About the PWR-01 Manuals

These manuals are intended for users of the Regulated DC Power Supply and their instructors. Explanations are given under the presumption that the reader has knowledge of the electrical aspects of regulated DC power supplies.

PWR-01 manual construction

User's manual (this manual, PDF)

This manual is intended for first-time users of this product. It provides an overview of the product, notes on usage, and specifications. It also explains how to configure the product, operate the product, perform maintenance on the product, and so on.

Please read this manual before you operate the product.

Communication interface manual (PDF)

This manual describes remote control and multichannel (Virtual Multi Channel Bus).

The interface manual is written for readers with sufficient basic knowledge of how to control power supplies using a PC.

Quick Reference

This document briefly explains the PWR-01 panel and the basic operation of it.

Safety Information

This document contains general safety precautions. Keep them in mind and make sure to observe them.

PDF files are included in the accompanying CD-ROM. You can view the PDF files using Adobe Reader.

The newest version of the manual can be downloaded from Download service of Kikusui website.

Firmware versions that this manual covers

This manual applies to products with firmware versions 1.2X.

When contacting us about the product, please provide us with the following information.

Model (marked in the top section of the front panel) Firmware version (see page 32) Serial number (displayed on the top panel).

Trademarks

Microsoft, Internet Explorer, and Windows are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All company names and product names used in this manual are trademarks or registered trademarks of their respective companies.

Copyrights

The contents of this document may not be reproduced, in whole or in part, without the prior consent of the copyright holder.

The specifications of this product and the contents of this document are subject to change without prior notice.

© 2019 Kikusui Electronics Corporation

Ferrite core set (1 set)

Input terminal cover (1 set)

* Only L type and ML type included.

wide range of voltage and current within rated output power.

Product Overview

The products in this series are divided into the following four models depending on the output capacity. They are divided into four types depending on the output voltage.

The PWR-01 series is a constant voltage (CV)/constant current (CC) automatic crossover power supply that can output a

	400W model	800W model
L type(40 V)	PWR401L	PWR801L
ML type(80 V)	PWR401ML	PWR801ML
MH type(240 V)	PWR401MH	PWR801MH
H type(650 V)	PWR401H	PWR801H

	1200W model	2000W model
L type(40 V)	PWR1201L	PWR2001L
ML type(80 V)	PWR1201ML	PWR2001ML
MH type(240 V)	PWR1201MH	PWR2001MH
H type(650 V)	PWR1201H	PWR2001H
L type(40 V) ML type(80 V) MH type(240 V) H type(650 V)	PWR1201L PWR1201ML PWR1201MH PWR1201H	PWR2001L PWR2001ML PWR2001MH PWR2001H

Features

Communication function

RS232C, USB, and LAN interfaces are all installed as standard. The remote interfaces comply with IEEE Std 488.2 1992 and SCPI Specification 1999.0.

The LAN interface complies with the LXI standard. Multichannel (VMCB), which controls up to 31 PWR-01s from a single PC, can be used to construct a multichannel power supply system.

Master-slave parallel operation

You can increase the output current by connecting up to three PWR-01s (two units for the 1200W model and 2000W model) in parallel. You can set one unit as the master unit. and control the remaining units as slave units.

If an error occurs in a slave unit, the master unit detects the alarm and shuts down the output of the entire system.

Setting preset memory function

You can save up to three sets of output settings (the combination of the voltage, current, OVP, OCP, and UVL). You can simply select a set of output settings that you want to use rather than having to specify each setting every time.

Automatic output-on setting

You can set the PWR-01 so that when a low AC input protection function (AC-FAIL) is activated and the output is turned off, the output is automatically turned back on when the problem that caused the output to turn off is fixed.

Output-on/off delay function

You can set the delay (DELAY TIME) from when the OUT-PUT key is turned on or off to when the output actually turns on or off. This is useful when you want to turn the output on or off by setting a delay according to the load characteristics.

Set voltage/current limitation function

You can apply limits to the voltage and current settings. This prevent you from setting an appropriate value by mistake, which would cause the output to turn off.

Overcurrent protection (OCP) detection time setting

You can set the amount of time that an overcurrent must persist after the first detection of the overcurrent before the overcurrent protection (OCP) is activated. If inrush current from the load causes an excessive current to flow temporarily, you can adjust the delay to prevent the overcurrent protection (OCP) from being activated.

Bleeder circuit function

You can turn the bleeder circuit on and off. Turn the bleeder circuit off when you do not want the internal bleeder circuit to sink output current. When you connect a battery, you can prevent excessive electrical discharges by turning the bleeder circuit off.

Soft start/ stop function

This function can be used to control the rise time or fall time when the load voltage or current cannot follow the sudden rise or fall in the output current or when you want to avoid the overvoltage or overcurrent protection from being activated.

Variable internal resistance function

You can easily simulate rechargeable batteries, solar batteries, fuel cells, and other power supplies that have internal resistance. By setting the internal resistance value in constant voltage (CV) mode, you can decrease the output voltage according to the output current.

Sequence function

The sequence function recalls conditions set in a program and runs automatically. If you write a program created on a PC into the PWR-01, you can execute the program from the panel.

When a program is written in the PWR-01, you can execute the program without a PC.

CONFIG setting shortcut function and display

You can register CONFIG setting parameters to the front panel's SC keys. Because you do not have to go into the CONFIG menu to set the parameters, you can perform tests efficiently by registering CONFIG parameters that you use frequently. Up to three parameters can be registered.

▲ Safety Precautions

When using this product, be sure to observe the "Safety Precautions" in the Safety Information manual.The following precautions pertain only to this product.

- · You cannot use this product by standing it up.
- The legs on the side panel of the 2000 W model is designed to temporarily stand the product up for the purpose of carrying it by the handle.

Because there is a risk of the product falling over, do not use or store the product in the standing position.

▲ Precautions Concerning Installation Location

When installing this product, be sure to observe the "Precautions Concerning Installation Location" in the Safety information manual. The following precautions pertain only to this product.

- When installing this product, be sure to observe the temperature and humidity ranges indicated below.
 Operating temperature range: 0 °C to +50 °C (32 °F to 122 °F)
 Operating humidity range: 20 %rh to 85 %rh (no condensation)
- When storing this product, be sure to observe the temperature and humidity ranges indicated below.
 Storage temperature range: -25 °C to +60 °C (-13 °F to 140 °F)
 Storage humidity range: 90 %rh or less (no condensation)

Notations Used in This Manual

- In this guide, the suite of products shown on the front cover is also referred to as the "PWR-01."
- The term "PC" is used to refer generally to both personal computers and workstations.
- The illustrations of displays used in this manual may differ from the actual displays. The illustrations are merely examples.
- The following markings are used in the explanations of this text.

Indicates a potentially hazardous situation which, if ignored, could result in death or serious injury.

Indicates a potentially hazardous situation which, if ignored, may result in damage to the product or other property.

NOTE

Indicates information that you should know.

See

Indicates a reference to detailed information.

Indicates a reference to a manual containing detailed information.

CFxx: x

"CF" indicates that this is a CONFIG parameter. The two digits after CF indicate the CONFIG parameter number. The value after the colon indicates the selected setting.

SHIFT+key name

Indicates an operation that requires you to press a key while holding down SHIFT.

📌 Memo

Indicates useful information.

•••••

Contents

About the PWR-01 Manuals	2
Accessories	3
Product Overview	3
Features	3
Safety Precautions	4
Precautions Concerning Installation	1
	4
Notations Used in This Manual	5
Component Names	8

Preparation

Connecting the Power Cord	14
400W model/ 800W mode	14
1200W model/ 2000W model	15
Load Considerations	19
Selecting the Load Cables	21
Output Terminal Insulation	23
When the output terminal is not grounde (floating)	ed 23
When the output terminal is grounded.	24
Connecting to the Output Terminals	25
Connecting to the rear-panel output terminals	25
Attaching the OUTPUT terminal cover.	27
Connecting to the front-panel output	
terminals	31
Turning the Power On	32
Turning on the POWER switch	32
Turning the POWER switch off	33
Remote Sensing Function	34

2 Basic Features

Measured Value Display and Setting Display 38
Panel Operations 40
Output Operation 41
Output on/off setting at power-on 41
Output-on startup state parameter 42
Output-on/ off delay setting 42
Soft start/ soft stop function 43
Operation Overview 45
CV Power Supply and CC Power Supply 47
Using the PWR-01 as a CV or CC Power
Supply 49
Protection Functions 50
Alarm occurrence and clearing alarms 50
Output shutoff (alarm) protection function. 52

	Setting limit protection function	58
(CONFIG Settings	60
	CONFIG parameter details	64
F	Preset Memory Function	77
	Saving settings	77
	Recalling settings	77
L	_ocking Panel Controls (Key Lock)	78
(CONFIG Shortcut Function	79
	Registering CONFIG shortcuts	79
	Using CONFIG shortcuts	79
ŝ	Switching from Remote Mode to Local Moc 80	le

3 Advanced Features

Bleeder Circuit Function	82	
Variable Internal Resistance Function	84	
Sequence Function		
Writing and executing a sequence		
program	85	
Synchronized Operation	86	

4 External Control

Product Operation	90
About the 11/12 Connectors	91
Notes for Connecting External Voltage (Ve 95	ext).
Output Voltage Control	97
Control using an external voltage (Vex 97	:t)
Control using an external resistance (R 98	ext)
Output Current Control	99
Control using an external voltage (Vex 99	:t)
Control using an external resistance (R 100	ext)
Controlling the Output On and Off States	101
Controlling Output Shutdown	103
Controlling the Clearing of Alarms	104
External Monitoring	105

5 Parallel/ Series Operation

Master-Slave Parallel Operation		
Features	108	
Connection	110	
Setting	112	
Starting master-slave parallel operation 113	on	
Series Operation	114	
Features	114	
Connection	116	

•

Setting	117
Starting series operation	117

6 Maintenance

Calibration	120
Calibration overview	120
Calibration procedure	121
Cleaning	122

7 Specifications

	400	W model	. 125
	800	W model	. 128
	120	0W model	. 131
	200	0W model	. 134
	Cor	nmon Specifications	. 137
Appe	А	Factory Default Settings	144
ndix	В	Options	146
	С	Troubleshooting	150

Component Names

Front panel

•••••

No.	Name	Function	See
1	POWER switch 400W model/ 800W model/ 1200W model: Power on/ off switch. Press the (I) side to turn the power on and the (O) side to turn the power off. 2000W model: Power on/ off bre aker. (Rated current: 50 A, L line single-pole) Flip the lever to the (I) side to turn on and the (O) side to turn off.		p.32, p.33
2	Voltmeter	Displays the voltage, alarm, or CONFIG parameter number.	p.38, p.60
		Lights green when output is turned on. Blinks orange during output-on delay. Blinks green during output-off delay.	p.41
3	OUTPUT LED	Blinks orange when output is on and a protection function is activated.	p.50
		Lights green during soft start. Blinks green during soft stop.	p.43
4	Ammeter	Displays the current, power, or the cause of an alarm, or the value of a CONFIG parameter.	р.38, р.50, р.60
5	OUTPUT key	Used to turn output on and off.	p.41
6	VIR/ SS/ DLY/ SEQ/ HB	VIR: Lights when the variable internal resistance function is enabled. SS: Lights when the soft start/ stop function is enabled and blinks when it is in progress. DLY: Lights when the output-on/ off delay is enabled and blinks when it is in progress. SEQ: Lights when a sequence is being executed and blinks the PWR-01 is waiting for a trigger. HB: Lights when the hyper bleeder of the bleeder circuit is enabled.	р.84 р.43 р.42 р.85 р.82
7	PRESET A/ B/ C LED	A: Lights green when the memory A values are being recalled or saved. B: Lights green when the memory B values are being recalled or saved. C: Lights green when the memory C values are being recalled or saved.	p.77
Q	SET key	Used to set and confirm the output voltage and output current (the key has an LED).	p.38
0	ALM CLR key	Used to release the activated state (alarm) of protection functions (the key has an LED).	p.51
9	OVP•OCP key Used to set and display the overcurrent protection (OCP), overvoltage protection (OVP), under-voltage limit (UVL) trip points (the key has an LED).		p.52, p.59
	SC1	Used to call the CONFIG parameter shortcut (the key has an LED)	p.79
10	CONFIG key	Used to configure the various operating conditions (CONFIG) (the key has an LED).	p.60
10	SC2	Used to call the CONFIG parameter shortcut (the key has an LED)	p.79
11	VOLTAGE knob	Used to set the voltage value or select the value of a CONFIG parameter.	p.40, p.60
	FINE	Used to make fine voltage value adjustments.	p.40
12	2 CV LED Lights green during constant voltage mode.		p.49
13	CC LED	Lights red during constant current mode.	p.49
14	CURRENT knob	Used to set the current, change the value of a CONFIG parameter, or set the internal resistance value.	р.40, р.60, р.65
	FINE	Used to make fine current or internal resistance value adjustments.	p.40, p.65
	ALM LED	Lights red when a protection function is activated. However, when the undervoltage limit (UVL) is activated, the LED does not light. When the power limit (POWER LIMIT) is activated, the LED blinks.	p.78
	RMT LED	Lights green when the PWR-01 is being remotely controlled	p.80
15	LOCK LED	Lights green when the keys are locked.	p.78
10	LAN LED	Lights and blinks when the LAN interface is running. • No fault status (green) • Fault status (red) • Standby status (orange) • Identify status (blinking green)	Communi- cation Interface Manual
16	LOCAL key	Used to switch between local mode and remote mode (the key has an LED) and switch the CON- FIG parameter display.	p.80
	SHIFT key	Used to enable the functions that are written in blue characters below the key.	-
17	PWR DSPL key	Used to display the output power on the ammeter (the key has an LED).	p.38
	LOCK key	Used to lock the operation of all keys other than the OUTPUT key (key lock) (the key has an LED).	p.78
18	MEMORY key	Used to load and save the value of preset memory A, B, or C (the key has an LED).	p.77
	SC3	Used to call the CONFIG parameter shortcut (the key has an LED).	p.79
19	Air inlet (louver)	Air inlet for cooling.	p.122
20	DC OUTPUT connector	Front-panel output terminal.	p.31
21	Rubber feet	400vv model/ 800vv model/ 1200vv model: Four locations on the bottom. 2000W model: Four locations on the bottom, four locations on the side.	p.147
22	Handle	Handle for carrying.	p.147

•

Rear Panel

400W model

•

No.	Name	Function	See
1	DC OUTPUT terminal	Rear-panel output terminal.	p.25
2	Chassis terminal	A connector for grounding the output.	p.25
3	LAN port ¹	Ethernet port for controlling the PWR-01 remotely.	
4	RS232C/ TRG IN connector ¹	RS232C port for controlling the PWR-01 remotely. Trigger signal input connector. The common terminal is connected to the chassis.	
5	TRG OUT connector ¹	Trigger signal output terminal. The common terminal is connected to the chassis.	Interface Manual
6	USB port ¹	USB port for controlling the PWR-01 remotely.	_
7	Sensing terminal	Terminals to connect the sensing cables to.	p.34
8	Air outlet	Air outlet for internal cooling.	_
9	AC INPUT	400W model/ 800W model: AC inlet. 1200W model/ 2000W model ² : AC INPUT terminal block.	р.14 р.15
10	J1 connector ¹	For external control and master-slave parallel operation.	p.91, p.110
11	J2 connector ¹	External control	p.91

1. 2.

A connector cover or terminal cover is attached when the product is shipped from the factory. A terminal block cover is attached when the product is shipped from the factory (2000W model only).

This page is intentionally blank.

Preparation

This chapter describes how to turn on the PWR-01, what kind of load cables to use, and how to connect cables to the output terminals.

For information about installing and moving this product, see "Precautions Concerning Installation Location" and "Precautions to Be Taken When Moving the Product" in the Safety information manual.

When using or storing this product, be sure to observe the temperature and humidity ranges. For environmental conditions, see General Specifications (p.142).

If you want to mount the product on a rack, see "Rack mount option" (*p.146*).

Connecting the Power Cord

This product conforms to IEC Overvoltage Category II (energy-consuming equipment that is supplied from a fixed installation).

WARNING

Risk of electric shock.

This product conforms to IEC Safety Class I (equipment that has a protective conductor terminal). Be sure to earth ground the product to prevent electric shock.

400W model/ 800W mode

WARNING	Risk of electric shock. The product is grounded through the power cord ground wire. Connect the protective conductor terminal to earth ground.
NOTE	 Use the included power cord to connect to the AC line. If the supplied power cord cannot be used because the rated voltage or the plug shape is incompatible, have a qualified engineer select an appropriate power cord that is 3 m or less in length.

- The power cord with a plug can be used to disconnect the product from the AC power line in an emergency. Connect the plug to an easily accessible power outlet so that the plug can be removed from the outlet at any time. Be sure to provide adequate clearance around the power outlet.
- Do not use the dedicated power cord with other instruments.
 - Check that the AC power line meets the nominal input rating of the product.

The product can receive a nominal line voltage in the range of 100 Vac to 240 Vac at 50 Hz or 60 Hz.

- 2 Check that the POWER switch is turned off.
- Connect the power cord to the AC inlet on the rear panel.
- Insert the power plug into a grounded outlet.

1200W model/ 2000W model

	Risk of electric shock.
	 Before you connect the power cable, turn off the switchboard breaker (a switch tha cuts off the power supply from the switchboard).
	• Attach the INPUT terminal block cover regardless of whether you are using the AC INPUT terminal block before turning the POWER switch on.
	Risk of fire.
	 Be sure to have a qualified engineer make the connection to the switchboard.
	 The switchboard breaker must meet the requirements shown below.
	Inside the product, protection circuits are connected to match the polarity of the input termi-
Zenemen	nal. Be sure to connect the L, N, and \oplus (GND) terminals correctly between the switchboard and the product.
NOTE	 We recommend that you use the optional dedicated power cord to connect to the AC powe line. If you will not use the dedicated power cord, use an appropriate power cord with a length of 3 m or less that has been selected by a qualified technician.
	 In an emergency, turn off the switchboard breaker to separate the product from the AC
	power line.

A power cord is not included with the 1200W model and 2000W model. Use a power cord that conforms to the rated AC input voltage and current of this product. The following dedicated power cord is available as an option.

AC5.5-1P3M-M6C-3S (CE compliant)

For the 2000W model

If you will not use one of the optional power cords, prepare a wire that meets the following specifications.

1200W model	Finished diameter: 12.1 mm or less
	Rated voltage: 250 V or higher
	Vinyl cabtire cable (VCTF)
	Nominal cross-sectional area 5.5 mm ² 3 core
	Input terminal end: Ring terminal 5.5-4 (5.5 mm ² M4))
2000W model	Nominal cross-sectional area 5.5 mm ² Single core, 3pcs. Input terminal end: Ring terminal 5.5-6 (5.5 mm ² M6)

Tightening torque of input terminal connection screws

	Tightening torque [N·m]
M4	1.33
M6	4.87

•••••

Switchboard breaker requirements

- Rated current For safety reasons, circuit breakers exceeding the specified current cannot be used.
 1200W model: 30 A (100 V system), 15 A (200 V system)
 2000W model: 50 A (100 V system), 30 A (200 V system)
- · Only use the breaker with this product.
- · Keep the breaker readily accessible at all times.
- Indicate that the circuit breaker is dedicated for use with this product and that it is used to disconnect the product from the AC power line.

	400W model	800W model	1200W model	2000W model
Protective conductor current (at 265 Vac, 60 Hz)	1.5 mA	2.5 mA	4.0 mA	4.7 mA
Inrush current	25 Amax	50 Amax	75 Amax	125 Amax

Connection procedure of 1200W model

Check that the AC power line meets the nominal input rating of the product.

The product can receive a nominal line voltage in the range of 100 Vac to 240 Vac at 50 Hz or 60 Hz.

- 2 Check that the POWER switch is turned off.
- 3 Connect the power cord to the AC INPUT terminal on the rear panel. Pass the power cord through the included INPUT terminal cover, and fix the cord in place using the lock plate and screws.

Be sure to connect the L, N, and () (GND) of the AC input terminal correctly.

4 Attach the INPUT terminal cover using the screws on the PWR-01.

Attach the included ferrite core to the power cord.

5

Attach the core as close to the input terminal as possible but not too close as to get in the way of attaching and removing the INPUT terminal cover.

Use the cable tie to fix the core on to the power cord. Check that the core is locked and does not move. Cut the cable tie at an appropriate length.

6 Attach a appropriate solderless terminal to the switchboard end of the power cord.

- Turn off the switchboard's circuit breaker.
- 8 Connect the L, N, and \bigoplus (GND) wires of the power cord to the matching terminals on the switchboard.

3

Connection procedure of 2000W model

When the PWR-01 is shipped from the factory, terminal block covers are attached to the AC INPUT terminal block.

If the cover is damaged or lost, contact your Kikusui agent or distributor

Check that the AC power line meets the nominal input rating of the product.

The product can receive a nominal line voltage in the range of 100 Vac to 240 Vac at 50 Hz or 60 Hz.

Check that the POWER switch is turned off.

Connect the power cord to the AC INPUT terminal on the rear panel.

Be sure to connect the L, N, and () (GND) of the AC input terminal correctly.

4 Attach the INPUT terminal cover to the AC INPUT terminal on the rear panel.

Use the screws on the INPUT terminal cover.

- 5 Attach a appropriate solderless terminal to the switchboard end of the power cord.
- **6** Turn off the switchboard's circuit breaker.
- Connect the L, N, and \bigoplus (GND) wires of the power cord to the matching terminals on the switchboard.

Load Considerations

Note that the output will become unstable if the following types of loads are connected.

Loads with peak current or pulse-shaped current

The PWR-01 only indicates mean values. Even when the indicated value is less than or equal to the set constant current, the peak values may exceed the set constant current. If this happens, the PWR-01 is instantaneously put into constant-current mode, and the output voltage drops.

For these types of loads, you must increase the set constant current or increase the current capacity.

Load current with peaks

Pulse-shaped load current

Loads that generate reverse current to the power supply

The PWR-01 cannot absorb reverse current from the load. Therefore, if a regenerative load (such as an inverter, converter, or transformer) is connected, the output voltage increases and becomes unstable. This can cause a malfunction.

For these types of loads, connect a resistor (RD) as shown in the following figure to bypass the reverse current. However, the amount of current to the load decreases by Irp.

Use a resistor with sufficient rated power for RD. If a resistor with insufficient rated power for the circuit is used, resistor RD will burn out.

Loads with accumulated energy

Connecting a load with accumulated energy, such as a battery, to the PWR-01 may cause current to flow from the load to the internal circuit of the PWR-01. This current may damage the PWR-01 or reduce the life of the load.

For this type of load, connect a reverse-current-prevention diode (DRP) between the PWR-01 and the load in series as shown in the following figure.

This cannot be used in conjunction with remote sensing.

• To protect the load and the PWR-01, use a DRP that conforms to the following specifications.

Reverse voltage withstand capacity: At least twice the rated output voltage of the PWR-01. Forward current capacity: 3 to 10 times the rated output current of the PWR-01. A diode with small loss.

• Be sure to take into account the heat generated by DRP. DRP will burn out with inadequate heat dissipation.

Selecting the Load Cables

WARNING Risk of fire.

- Use load cables whose capacity is adequate for the PWR-01's rated output current.
- The output terminal and its surrounding area become very hot. Use cables whose covers have an allowable temperature of 85 °C or higher.
- Risk of electric shock.
- Use load cables with a voltage rating that meets or exceeds the product's isolation voltage. For details on the PWR-01's isolation voltage, see Chap.7 "Specifications"(p. 123).

• Use load cables with a core diameter that is appropriate for the amount of current being used and with sturdy, flame-resistant insulation.

Current capacity of load cables

A cable's temperature is determined by the resistive loss based on the current, the ambient temperature, and the cable's external thermal resistance. The following table shows the current capacity of heat-resistant vinyl cables that have a maximum allowable temperature of 60 °C when one of the cables is separated and stretched out horizontally in air in an ambient temperature of 30 °C. The current must be reduced under certain conditions, such as when vinyl cables that have a low heat resistance are used, when the ambient temperature is 30 °C or greater, or when cables are bundled together and little heat is radiated.

Nominal cross-	AWG (refe	erence cross-	Allowable current ¹ (A)	Kikusui-recom-
sectional area (mm ²)	sectional a	area; mm ²)	(Ta = 30 °C)	mended current (A)
2	14	(2.08)	27	10
3.5	12	(3.31)	37	-
5.5	10	(5.26)	49	20
8	8	(8.37)	61	30
14	6	(13.3)	88	50
22	4	(21.15)	115	80
30	2	(33.62)	139	-
38	1	(42.41)	162	100
50	1/0	(53.49)	190	-
60	2/0	(67.43)	217	-
80	3/0	(85.01)	257	200
100	4/0	(107.2)	298	-

1 Excerpt from Japanese laws related to electrical equipment.

Taking measures against noise

When connecting cables that have the same heat resistance, separating the cables as much as possible to increase heat radiation enables a greater amount of current to flow. However, wiring the + (positive) and - (negative) output wires of the load cable side by side or bundling them together is more effective against unwanted noise. The Kikusui-recommended currents shown in the above table are allowable currents that have been reduced in consideration of the potential bundling of load cables. Use these values as a guideline when connecting cables.

Limitations of the remote sensing function

All wires have resistance. As the wire becomes longer or the current becomes larger, the voltage drop in the wire becomes greater. This results in a smaller voltage being applied at the load end. The PWR-01 has a sensing function that compensates for this voltage drop up to the following values (p.34). If the voltage drop exceeds this level, use cables that have a greater cross-sectional area.

	L type	ML type	MH type	H type
Compensation	Approx. 1.5 V one	Approx. 4 V one	Approx. 5 V one	Approx. 5 V one
voltage	way	way	way	way

Output Terminal Insulation

A WARNING	Risk of electric shock. For safety reasons, even if the output terminal is grounded, make sure that the insulation capacity of the output terminal (including the sensing terminal) is greater than or equal to the isolation voltage of this product. For details on the isolation voltage of each model, see "Specifications" (<i>p.123</i>). If you cannot obtain a cable with sufficient rated voltage, secure adequate withstand voltage by passing the cable through an insulation tube with a withstand voltage greater than the isolation voltage of the PWR-01.
	The signal cable may burn out. If the PWR-01 is to be controlled through an external voltage (Vext), do not ground the external voltage (leave it floating).

The cable and load that are connected to the output terminal (including the sensing terminal) must have an insulation capacity that is greater than or equal to the isolation voltage of the PWR-01 with respect to the chassis. Isolation voltage indicates the maximum allowed voltage that appears across the output terminal of the power supply unit and the protective conductor terminal (chassis terminal).

When the output terminal is not grounded (floating)

The output terminal of the PWR-01 is isolated from the protective conductor terminal. If you connect the GND wire of the power cord to the ground terminal of the switchboard, the chassis of the PWR-01 is set to ground potential.

The J1 connector on the rear panel are at approximately the same electric potential as the PWR-01's negative output terminal. Cables and devices that are connected to these pins must have an insulation capacity greater than or equal to the isolation voltage of the PWR-01.

When the output terminal is grounded

If the positive output terminal is connected to the chassis terminal, the positive output terminal is at ground potential. The cable and load that are connected to the output terminal (including the sensing terminal) will only require an insulation capacity that is greater than or equal to the maximum output voltage of the PWR-01 with respect to the chassis.

The same holds true when the negative terminal is connected to the chassis terminal. The cable and load require an insulation capacity that is greater than or equal to the maximum output voltage of the PWR-01.

For safety reasons, connect one of the output terminals to the chassis terminal unless your application requires the output terminals to be floating.

Connecting to the Output Terminals

Risk of electric shock.

- Turn the POWER switch off before you touch the rear-panel output terminals.
- Even if you turn the output off or turn the POWER switch off, if the bleeder circuit is set to off (CF01: d ,b), the voltage that was present when the output was on will remain at the output terminals. Set the bleeder circuit to on (CF01: cord/bbP) before you touch the output terminals.
- Regardless of whether load cables are connected to the output terminals, be sure to attach the OUTPUT terminal cover before turning the POWER switch on.

Tightening torque of output terminal connection screws

	Tightening torque [N·m]
M3	0.58
M4	1.33
M8	11.22
M10	22.47

Connecting to the rear-panel output terminals

Turn the POWER switch off.

Check that there is no residual voltage at the rear-panel output terminals.

2 Connect one end of the included chassis connection short bar to the chassis terminal and the other end to the negative or positive output terminal.

Bend the short bar to match the positions of the terminals.

Use the screw on the PWR-01 to connect the short bar to the chassis terminal. Use the screw on the rear-panel output terminal to connect the short bar to the output terminal. If you are not grounding the output terminal (leaving it floating), refer to "Output Terminal Insulation" (p.23) before use.

Example of connecting to the negative terminal

Attach solderless terminals to the load cables.

The rear-panel output terminals have holes for connecting the load cables. Use solderless terminals that are appropriate for the bolts that you are using.

Connect the load cables to the rear-panel output terminals.

Use the included screw set.

To reduce the influence of noise on the output, keep the cables as short as possible. If possible, twist the positive and negative load cables.

Cable diameter Up to ø7 (including the insulation)

Applicable models

400W model

800W model 1200W model

Cable diameter Up to ø10 (including the insulation)

Applicable models 2000W model

Bring the ring to the bottom side, and align to the top side of the output terminal.

[Connection using the M4 screw set]

🗄 Memo If you do not connect load cables in the correct orientation, you will not be able to attach the OUTPUT terminal cover.

Attaching the OUTPUT terminal cover

You can adjust the diameter of the holes that the load cables pass through by changing the orientation of the adapter attached to the OUTPUT terminal cover. There are two available orientations. Use the appropriate orientation for the load cables (including the insulation) that you are using.

Attaching the 400W model/ 800W model/ 1200W model

- Cable diameter (including the insulation) up to ø7: Attach the adapter of the OUTPUT terminal cover so that the hole diameter is small.
- Cable diameter (including the insulation) from ø8 to ø17: Attach the adapter of the OUTPUT terminal cover so that the hole diameter is large.

Attaching the 2000W model

- Cable diameter (including the insulation) up to ø10: Attach the adapter of the OUTPUT terminal cover so that the hole diameter is small.
- Cable diameter (including the insulation) from ø11 to ø20: Attach the adapter of the OUTPUT terminal cover so that the hole diameter is large.

Attach the adapter to the top half of the OUTPUT terminal cover.

Insert the adapter in alignment with the tabs or cuts in the OUTPUT terminal cover.

For thin load cables

Align the bottom half of the OUTPUT terminal cover to the rear-panel output terminals.

Place the top half of the OUTPUT terminal cover recessed slightly on top of the bottom half, and then slide it forward. Attach them together with the included screws.

Make sure that the screws are securely fastened.

of the bottom half (1) and then slide (2).

Connecting to the front-panel output terminals

The specifications of the PWR-01 apply to the rear-panel output terminals. The front-panel output terminals may not meet the specifications.

There is no grounding terminal on the front-panel output terminals. To ground one side of the output, connect the rear-panel chassis terminal to either the negative output terminal or the positive output terminal.

If you are not grounding the output terminal (leaving it floating), refer to "Output Terminal Insulation" (p.23) before use.

If the output current of the front-panel output terminals exceeds 10 A (typical value), the frontpanel output terminal overcurrent protection (FOCP) will be activated (p.55).

• Risk of electric shock. The front-panel output terminals are designed to be used with safety plugs. Do not use connectors that have bare conductive parts (such as banana plugs) to connect to the front-panel output terminals.

• Risk of heat buildup or fire. Do not run current higher than 10 A through the front-panel output terminals.

Necessary cables and plugs (recommended)

Polyvinyl chloride insulation cable: Nominal cross-sectional area of 0.33 mm² (AWG22) to 0.82 mm² (AWG18) Rated voltage: 1000 V or higher

Length: Less than 3 m

Output terminal plugs: Safety plugs

Safety plugs TL41 and TL42 are available as options (p. 148).

Attach safety plugs to the load cables.

Connect the load cables with safety plugs to the front-panel output terminals.

To reduce the influence of noise on the output, keep the cables as short as possible. Twist the positive and negative load cables.

Turning the Power On

Turning on the POWER switch

2

WARNING	Risk of electric shock. Regardless of whether load cables are connected to the output terminals, be sure to attach the OUTPUT terminal cover before turning the POWER switch on.
	Risk of damage to load. If the PWR-01 is configured to turn on the output when the POWER switch is turned on in CONFIG settings, set an appropriate OVP or OCP value before connecting a different load.

If the POWER switch is turned on for the first time after purchase, the PWR-01 starts in the factory default condition (p.144). Subsequent times that you turn the PWR-01 on, it starts with the panel settings (excluding the output on/off setting) that were in use immediately before the POWER switch was turned off.

You can use the CONFIG settings (CF45) to select the output state of the PWR-01 when the POWER switch is turned on (p.71).

Check that the power cord is connected correctly.

Check that the OUTPUT terminal cover is attached (p.27).

When the product is shipped from the factory, the OUTPUT terminal cover is not attached.

Turn the POWER switch on (I).

All the indicators light, and then the voltmeter and the ammeter display the following sequence of information: the rated voltage and rated current, the firmware version number, and then the build number. Each item is displayed for approximately 1 second.

After a few seconds, the PWR-01 enters the operation standby state (the measured value is displayed).

Rated voltage and rated current display (PWR401ML example)

Firmware version display (Version 1.00 in this example)

Build number display (Build number BLD 0125 in this example)

.

Turning the POWER switch off

Turn the POWER switch off (O).

Because the AC input is shut off, AC-FAIL will be indicated, and then the PWR-01 will shut down.

Power-off indication

The PWR-01 saves the panel settings (except the output on/off setting) that were in use immediately before the POWER switch was turned off.

You can use the CONFIG settings (CF45) to select the output state of the PWR-01 when the POWER switch is turned on (p.71).

If the POWER switch is turned off immediately after the settings have been changed, the last settings may not be stored.

After you turn the POWER switch off, wait at least 10 seconds after the panel display turns off before you turn the POWER switch back on. Repeatedly turning the POWER switch on and off at short intervals can cause damage to the inrush current limiter. Furthermore, this will shorten the service life of the POWER switch and the internal input fuse.

Remote Sensing Function

Remote sensing is a function that stabilizes the output voltage across the load by reducing the influence of voltage drops and other effects caused by the load cable resistance.

The PWR-01 remote sensing can compensate up to the values shown below. Select a load cable that has sufficient current capacity to prevent the voltage drop in the load cable from exceeding the compensation voltage.

When you perform remote sensing, set the voltage of the sensing point (across the load) so that it does not exceed the rated output voltage. If you are performing remote sensing with the voltage close to the maximum output voltage, the output is limited by the maximum output voltage (105 % of the rated output voltage). Electrolytic capacitors may be required at the sensing point (across the load).

To reduce the effect of noise, use twisted-pair cables or 2-core shielded cables. When you use shielded cables, connect the shield to the PWR-01 or the load grounding terminal.

	L type	ML type	MH type	H type
Compensation voltage	Approx. 1.5 V one	Approx. 4 V one	Approx. 5 V one	Approx. 5 V one
	way	way	way	way

When the product is shipped from the factory, a sensing short bar is connected across the sensing terminals and DC OUTPUT terminals. When the sensing terminals are not used, connect the sensing short bar.

If the short bar is damaged or lost, contact your Kikusui agent or distributor.

Connecting the sensing cables

Risk of electric shock and damage to internal circuits.
 Never wire the sensing terminals while the POWER switch is turned on.
 For sensing cables, use cables with a voltage rating that is higher than the PWR-01's isolation voltage. Protect the uncovered sections of the shielded cable by using insulation tubes whose withstand voltage is greater than the PWR-01' isolation voltage.
 Even if you turn the output off or turn the POWER switch off, if the bleeder circuit is set to off (CF01: dot), the voltage that was present when the output was on will remain at the output terminals. Set the bleeder circuit to on (CF01: corc n/ hyp) before you touch the sensing terminals.

• Be sure to attach the OUTPUT terminal cover before turning the POWER switch on.

If the sensing cables come loose, the output voltage will rise several volts. To prevent voltage output exceeding the voltage setting, set an appropriate OVP trip point.

After you finish using remote sensing, connect the sensing short bar.

- Turn the POWER switch off.
- 2 Remove the sensing short bar that is connected across the sensing terminals and DC OUTPUT terminals.

3 Attach Solderless terminals to the sensing cables, and connect the sensing terminals to the sensing point (across the load).

Attach Solderless terminals that match the screws to be used, and securely fasten the cables.

If you cannot use shielded cables, twist the positive and negative cables sufficiently.

36

Electrolytic capacitor to connect across the load

If the wiring inductance component is large, the following symptoms may appear.

· Oscillation

If the wires used to connect to the load are long, the wiring inductance and capacitance can cause phase shifting at a level that cannot be ignored. This may lead to oscillation.

Output fluctuation

If the load current changes drastically in a pulse-shaped pattern, the output voltage may become large due to the wiring's inductance component.

You can reduce the inductance component by twisting the load cables, which stabilizes the voltage. However, if this does not correct the problem, connect an electrolytic capacitor across the load.

Electrolytic capacitor to use

Capacitance: 0.1 µF to several 100 µF

Withstanding voltage: At least 120 % of the rated output voltage of the PWR-01

	L type	ML type	MH type	H type
Withstanding voltage	48 V or more	96 V or more	288 V or more	780 V or more

If you are inserting a mechanical switch between the PWR-01 and the load

If you want to connect and disconnect the load using a mechanical switch that is inserted between the PWR-01 and the load, be sure to include switches in the sensing cables as shown in the following figure and turn on and off the load cable and the sensing cables simultaneously. Before you turn the mechanical switch on or off, be sure to turn off the OUTPUT key.

Basic Features

This chapter describes how to turn the output on and off and the basic operations that you can perform from the front panel.

Measured Value Display and Setting Display

The voltage and current displays have the following two states.

- Measured value display
- · Setting display

In addition to the voltmeter and ammeter, the PWR-01 can display the power, the set OVP, OCP, or UVL, and the system configuration.

Measured value display

The present output voltage and output current are displayed. In this situation, the SET key is off.

You can change the output voltage and output current in the measured value display (p.47).

Power display

In the measured value display, press PWR DSPL to display the output voltage in the voltmeter and the output power on the ammeter. The output power is calculated from the measured output voltage and the measured output current.

When the power is being displayed, the PWR DSPL key lights. If you press the key again, the light turns off, and the output current is displayed.

Setting display

Press SET to light the key and display the present output voltage and output current settings.Pressing SET again turns off the key and shows the measured value display.

The SET key is disabled when the instrument is being controlled externally. The settings are not displayed even when you press the SET key.

Overvoltage protection, overcurrent protection, and undervoltage limit setting display

Press OVP•OCP to light the key and display the present overcurrent protection and overvoltage protection settings.

Press OVP•OCP again, the present undervoltage limit value is displayed.

System configuration setting display

Press CONFIG to light the key and display the current system configuration settings.

Panel Operations

Measured value display, setting display, and set OVP/ OCP display

Turn the VOLTAGE knob to change the voltage. Turn the CURRENT knob to change the current.

When the output is on, press SET to switch to the setting display, and then change the output while you view the actual voltage or current settings.

Fine adjustment (FINE)

Hold down SHIFT while you turn the VOLTAGE knob or CURRENT knob to make small changes to the value. When the output is on, amount of change becomes even smaller.

The displayed current or voltage may not change even if you turn the VOLTAGE or CUR-RENT knob. This is because the value is being changed at a higher resolution than what is shown. In this situation, the display will change when the amount that you change the value by reaches the smallest display digit of the set voltage or current.

Output Operation

The output turns on and off each time that you press OUTPUT. When output is on, the OUT-PUT LED lights. When the output is off, the OUTPUT LED turns off.

When the output is on, output is generated at the present set values.

If you change the settings while the output is on, the changes are applied immediately to the output. If the output is off, the setting display will appear (the SET key lights) as soon as you change the settings. After changing the setting, pressing OUTPUT turns the output on.

You can use external control to turn the output on and off (p.67, p.101).

Setting limits

You can apply limits to the voltage and current settings (p.52, p.54, p.59).

Using CONFIG settings (CF22/ CF23), you can set limitations so that the values do not exceed about 95 % of the set overvoltage protection (OVP) trip point or about 95 % of the set overcurrent protection (OCP) trip point and so that the values are not set lower than the set undervoltage limit (UVL trip point).

You can avoid turning the output off by mistakenly setting the voltage or current to a value that exceeds the set OVP or OCP trip point or avoid setting a value that is lower than the set UVL trip point.

Output on/off setting at power-on

By factory default, the output is off when the power is turned on. Using a CONFIG setting, you can set the output state at power-on (p.71).

About 2000W model, the breaker trip setting that is applied when an OVP/ OCP/ FOCP/ SD or PRL ALM activates is set to "trip" (CF25: ___) and the OVP trip point is set lower than the output voltage setting, the OVP will activate every time you turn the POWER switch on and the POWER switch will turn off.

If the condition above occurs and you are unable to change any of the settings, turn off the on / off control setting of the external control output, turn the POWER switch, and change the OVP trip point. Or, on while holding down the LOCAL key and PWR DSPL key to reset the PWR-01 to factory default settings (p.101, p.144).

CAUTION Risk of damage to load.

If you want to turn on the output at power-on, be sure to set an appropriate OVP/OCP trip point for the connected load before turning off the POWER switch (p.52, p.53).

Output-on startup state parameter

You can set whether to start the PWR-01 as a constant voltage (CV) power supply or a constant current (CC) power supply when the output is turned on (p.64).

Using the output-on startup state CONFIG parameter (CF02: $[\li]/[[])$, select prioritize CV (CF02: $[\li]$) to start as a constant voltage (CV) power supply or prioritize CC (CF02: [[]) to start as a constant current (CC) power supply.

Output-on/ off delay setting

You can set the delay from when the OUTPUT key is pressed to when the output actually turns on or off (p.65). This is a useful feature when you want to turn the output on or off by setting a delay according to the load characteristics.

Use the output-on delay (CF08) or output-off delay (CF09) CONFIG parameter to set the delay. When you set the delay, DLY lights.

When the output-on/ off delay is in effect, DLY and the OUTPUT LED blink (orange if set to on, green if set to off).

If you press OUTPUT when the output-on/ off delay is in effect, the process is canceled, and the output is turned off. If you press OUTPUT again, the output-on delay resumes.

You can use the CONFIG settings to allow the output-on/ off delay function to be controlled through the output on/off control using an external contact (CF14: E_{nh}).

▼ represents that the OUTPUT key has been pressed.

Soft start/ soft stop function

You can set the rise time and fall time of output voltage/ output current.

This is useful when the load cannot follow the sudden rise or fall in the output voltage/ output current or when you want to avoid the overvoltage protection/ overcurrent protection from being activated.

Set the soft start time (CF04/ CF06) and soft stop time (CF05/ CF07) CONFIG parameters. The soft start and soft stop times are applied to the operation mode set by the output-on startup state (CF02: \Box / \Box).

When you set the this function, SS lights.

When soft start is in effect, SS blinks, and the OUTPUT LED lights green. When soft stop is in effect, SS and the OUTPUT LED blink green.

If you press OUTPUT when soft start or soft stop is in effect, the process is canceled, and the output is turned off. If you press OUTPUT again, soft start resumes.

If the bleeder circuit is set to off, the output current may not fall gradually even if soft stop is used.

You can use the CONFIG settings to allow the soft start and soft stop functions to be controlled through the output on/off control using an external contact (CF14: E_nh).

▼ represents that the OUTPUT key has been pressed.

Soft start and soft stop waveforms

Waveforms when soft start and soft stop are used are shown below.

Waveform when soft start is used

▲ represents that the OUTPUT key has been pressed.

Waveform when soft stop is used

Operation Overview

The PWR-01 is a constant voltage (CV)/ constant current (CC) regulated DC power supply that can output a wide range of voltage and current within rated output power.

If you configure the settings so that "output voltage × output current" is less than or equal to the rated output power, the PWR-01 operates as a traditional constant-voltage (CV)/ constant-current (CC) power supply.

If you configure the settings so that "output voltage × output current" is greater than the rated output power, the actual output is limited (p.59) by the power limit (POWER LIMIT: approximately 105 % of the rated output power), and the output voltage and output current change depending on the load value.

[L type] Operating range

22.5 30 37.5 45 52.5 60 67.5 PWR1201ML 37.5 50 62.5 75 87.5 100 112.5 PWR2001ML Output current (A)

PWR-01

0

12.5

25

•

•

46

[MH type] Operating range

CV Power Supply and CC Power Supply

The PWR-01 has features that makes it possible to function as a constant-voltage source and constant-current source even when the load is changed. The constant-voltage source operation is referred to as constant-voltage (CV) mode. The constant-current source operation is referred to as constant-current (CC) mode. The operation mode is determined by the following three values.

- Output voltage setting (Vs)
- Output current setting (Is)
- Load resistance (RL)

The operation modes are described below.

The above figure shows the PWR-01 operation modes. The load resistance is denoted as RL. The resistance, which is denoted as Rc, is calculated from the set voltage and current (Rc = Vs/ Is. Resistance at the crossover point). The power supply is designed so that it operates in

CV mode in area \boxed{A} and CC mode in area \boxed{B} . The boundary is the line defined by RL = Rc. This line represents the load at which the output voltage and the set voltage are equal and the output current and the set current are equal. If load resistance RL is greater than resistance RC, the operating point is in area \boxed{A} , and the PWR-01 operates in CV mode (point p). In this case, the set current Is equals the current limit.

When the PWR-01 is operating in CV mode, the output voltage is maintained at the set voltage. Output current I is determined by the equation I = Vs/RL and is a current that is less than current limit Is. The actual current that flows is not necessarily equal to the specified value.

For loads in which transient peak current flows, current limit Is must be set higher than the peak value.

Conversely, if load resistance RL is less than resistance Rc, the operating point is in area |B|, and the PWR-01 operates in CC mode (point q). In this case, set voltage Vs equals the voltage limit.

When the PWR-01 is operating in CC mode, the output current is maintained at the set current. Output voltage V is determined by the equation $V = Is \times RL$ and is a voltage that is less than voltage limit Vs. The actual voltage that is applied is not necessarily equal to the specified value.

Crossover point

The PWR-01 switches automatically between CV mode and CC mode according to the changes in the load. A crossover point is the point at which the mode switches.

For example, when operating in CV mode, if the load changes and the output current reaches the current limit, the PWR-01 automatically switches to CC mode to protect the load. Likewise, when operating in CC mode, if the output voltage reaches the voltage limit, the PWR-01 switches to CV mode.

CV mode and CC mode operation example

This section uses a power supply with a rated output voltage of 100 V and a rated output current of 10 A as an example.

A load resistance (RL) of 8 Ω is connected to the output terminals of the power supply. The output voltage and output current are set to 30 V and 5 A, respectively. In this case, Rc = 30 V/ 5 A = 6 Ω . Because 8 Ω is greater than 6 Ω (RL > Rc), the power supply operates in CV mode. When you want to increase the voltage in CV mode, you can increase the voltage up to the voltage defined by the following equation: Vs = Is × RL. Substituting the values, we obtain Vs = 5 A × 8 Ω = 40 V. If you try to increase the voltage above this point, the crossover point is reached, and the power supply automatically switches to CC mode. To maintain operations in CV mode, increase the current limit.

Next, a load resistance (RL) of 5 Ω is connected to the output terminals of the power supply. The output voltage and output current are set to 30 V and 5 A, respectively. In this case, Rc = 30 V/ 5 A = 6 Ω . Because 5 Ω is less than 6 Ω (RL < Rc), the power supply operates in CC mode. If you want to increase the current in CC mode, you can increase the current up to the current defined by the following equation: Is = Vs/RL. Substituting the values, we obtain Is = 30 V/5 Ω = 6 A. If you try to increase the current above this point, the crossover point is reached, and the power supply automatically switches to CV mode. To maintain operations in CC mode, increase the voltage limit.

Using the PWR-01 as a CV or CC Power Supply

When the PWR-01 is used as a constant-voltage power supply, the set current is the limit to the current that can flow through the load.

When the PWR-01 is used as a constant-current power supply, the set voltage is the limit to the voltage that can be applied to the load.

If the specified limit is reached, the PWR-01 automatically switches its operation mode. When the PWR-01 switches its operation mode, the lighted LED, the CV LED (green) or CC LED (red), changes to indicate the switch.

Press SET to change to the setting display.

The SET key lights.

Turn the VOLTAGE knob to set the voltage.

Voltage setting range: 0 % to 105 % of the rated output voltage

PWR401L	0 V to 42 V	PWR801L	0 V to 42 V
PWR401ML	0 V to 84 V	PWR801ML	0 V to 84 V
PWR401MH	0 V to 252 V	PWR801MH	0 V to 252 V
PWR401H	0 V to 682.5 V	PWR801H	0 V to 682.5 V
PWR1201L	0 V to 42 V	PWR2001L	0 V to 42 V
PWR1201ML	0 V to 84 V	PWR2001ML	0 V to 84 V
PWR1201MH	0 V to 252 V	PWR2001MH	0 V to 252 V
PWR1201H	0 V to 682.5 V	PWR2001H	0 V to 682.5 V

3

Δ

Turn the CURRENT knob to set the current.

Current setting range: 0 % to 105 % of the rated output current

PWR401L	0 A to 42 A	PWR801L	0 A to 84 A	
PWR401ML	0 A to 21 A	PWR801ML	0 A to 42 A	
PWR401MH	0 A to 5.25 A	PWR801MH	0 A to 10.5 A	
PWR401H	0 A to 1.943 A	PWR801H	0 A to 3.885 A	
PWR1201L	0 A to 126 A	PWR2001L	0 A to 210 A	
PWR1201ML	0 A to 63 A	PWR2001ML	0 A to 105 A	
PWR1201MH	0 A to 15.75 A	PWR2001MH	0 A to 26.25 A	
PWR1201H	0 A to 5.828 A	PWR2001H	0 A to 9.71 A	

Press OUTPUT to turn output on.

The SET key turns off, and the OUTPUT LED lights. When the PWR-01 is operating as a constant-voltage power supply, the CV LED lights green. When the PWR-01 is operating as a constant-current power supply, the CC LED lights red.

Even when the output is on, you can set the voltage and current by carrying out Step2 and Step3 while checking the actual output voltage or current.

You can set the voltage that is actually output while checking the power (p.38).

You can use the CONFIG settings to set the output-on startup state (CF02: $[\sqcup / []) (p.64)$.

Set this according to the operation mode that you are using. You can prevent overshoot from occurring when the output is turned on by prioritizing CV when using the PWR-01 as a constant-voltage power supply and by prioritizing CC when using the PWR-01 as a constant-current power supply.

When used as a slave device, CC is automatically prioritized.

When the output is turned on, the internal capacitors are charged. Depending on the set current, the PWR-01 may enter CC mode for an instant.

Protection Functions

The PWR-01 protection functions can be divided into those that shut off the output and those that limit settings.

Output shutoff (Alarm occurrence)

- Overvoltage protection (OVP)
 Overcurrent protection (OCP)
- Front-panel output terminal overcurrent protection (FOCP)
- Overheat protection (OHP)
- Incorrect sensing connection protection (SENSE)
- Low AC input protection (AC-FAIL)
- Communication monitoring (WATCHDOG)
 Shutdown (SD)
- Master-slave parallel operation protection (PRL ALM)

Setting limits

- Voltage setting limit (limited to about 95 % of the OVP trip point)
- Undervoltage limit (UVL)
- Current setting limit (limited to about 95 % of the OCP trip point)
- Power limit (POWER LIMIT)

Alarm occurrence and clearing alarms

Alarm occurrence

When a protection function is activated and the output is shut off, an alarm occurs, and the PWR-01 is set to the following state.

Output off

For the OVP/ OCP/ FOCP/ SD/ PRL ALM activation, you can select breaker tripping using CONFIG settings (2000W model only).

ALM LED on, indication of the cause of alarm OUTPUT LED blinking orange if the protection function was activated when the output was on

When a CONFIG parameter is being displayed, the cause of alarm is not displayed.

If breaker tripping is selected for OVP/ OCP/ FOCP/ SD/ PRL ALM (CF25: ON), indications of the cause of alarm and low AC input protection (AC-FAIL) are shown alternately on the front panel display (2000W model only).

Alarm signal output

Alarm signal generated from pin 14 of the J1 connector if PRL ALM or SD is activated Alarm signal generated from pin 4 of the J2 connector if OVP, OCP, FOCP, OHP, SENSE, AC-FAIL, WATCHDOG, or SD is activated

Even when the breaker trips, an alarm signal is output (2000W model only).

Clearing alarms

There are two methods to clear alarms.

- a. Press ALM CLR (SHIFT+SET) or apply a low level signal (0 V to 0.5 V) to or short pin 6 of the J1 connector to clear the alarm state. If you do not eliminate the cause of the alarm, an alarm will occur again.
- b. Turn off the POWER switch. Fix the problem that caused the alarm, and turn the POWER switch back on.

For shutdown (SD) and master-slave parallel operation (PRL ALM), use method "b" to clear the alarm.

If an alarm still occurs even after you have corrected all the causes of alarms, the PWR-01 may be malfunctioning. Stop using it immediately, and contact your Kikusui agent or distributor.

Alarm signal

Alarm signal is generated from pin 14 of the J1 connector if PRL ALM or SD is activated. The J1 connector is at approximately the same electric potential as the negative output terminal.

Alarm signal is generated from pin 4 of the J2 connector if OVP, OCP, FOCP, OHP, SENSE, AC-FAIL, WATCHDOG, or SD is activated. The signal is isolated from other terminals through an open collector photocoupler.

Output shutoff (alarm) protection function

Overvoltage protection (OVP)

The overvoltage protection function is activated when the output terminal voltage exceeds the set voltage (OVP trip point).

You need to set an appropriate OVP trip point. Immediately after you purchase the PWR-01 or immediately after a load is changed, set the OVP trip point to a value that is appropriate for the load.

If the voltage setting limit is set to on (CF23: ___), you cannot set an OVP trip point that is lower than the voltage setting.

You can select using CONFIG settings whether to trip the breaker when the overvoltage protection (OVP) function is activated (CF25: $_{\Box \Box}/_{\Box}FF$) (2000W model only).

Setting the OVP trip point

OVP operates on the output terminal voltage. If you want to activate the protection function according to the voltage across the load, take the voltage drop in the load cable into consideration when you set the OVP trip point.

Press OVP•OCP.

The OVP•OCP key lights, and the voltmeter displays the present OVP trip point.

OVP trip point indication

7 Turn the VOLTAGE knob to set the OVP trip point.

OVP setting range: 10 % to 112 % of the rated output voltage

	L type	ML type	MH type	H type
OVP setting range	4 V to 44.8 V	8 V to 89.6 V	24 V to 268.8 V	65 V to 728 V

Press OVP•OCP twice to finish the configuration.

The OVP trip point will be set. The OVP•OCP key turns off, and the measured value display appears.

Checking OVP operation

If the voltage setting limit is set to on (CF23: חם), the output voltage cannot be set higher than the OVP trip point, so you cannot verify the OVP operation.

Check that the OUTPUT LED is turned off.

Set the output voltage to a value lower than the OVP trip point.

Press OUTPUT to turn output on.

The OUTPUT LED lights.

Memo Press PWR DSP L to cancel the confirmation of the parameter. Slowly turn the VOLTAGE knob clockwise until the OVP is activated.

When the output voltage exceeds the OVP trip point, an alarm will occur. The ALM LED lights, and the OUTPUT LED blinks.

Δ

5

6

Alarm indication when OVP is activated

Check that output has turned off, or breaker trip (2000W model only).

If the output turns off, press ALM CLR (SHIFT + SET) to clear the alarm.

If you do not change the output voltage, the OVP will be activated again.

Overcurrent protection (OCP)

The overcurrent protection (OCP) function is activated when the output current exceeds the set current (OCP trip point).

You need to set an appropriate OCP trip point. Immediately after you purchase the PWR-01 or immediately after a load is changed, set the OCP trip point to a value that is appropriate for the load.

If the current setting limit is set to on (CF22: חם), you cannot set an OCP trip point that is lower than the current setting.

You can set the detection time of OCP activation.

You can select using CONFIG settings whether to trip the breaker when the overcurrent protection (OCP) function is activated (CF25: $_{\Box \Box}/_{\Box}FF$) (2000W model only).

Setting the OCP trip point

Press OVP•OCP.

2

The OVP•OCP key lights, and the ammeter displays the present OCP trip point.

OCP trip point indication

Turn the CURRENT knob to set the OCP trip point.

OCP setting range: 10 % to 112 % of the rated output current

		L type	ML type	MH type	H type
OCP	400 W	4 A to 44.8 A	2 A to 22.4 A	0.5 A to 5.6 A	0.185 A to 2.072 A
Setting	800 W	8 A to 89.6 A	4 A to 44.8 A	1 A to 11.2 A	0.37 A to 4.144 A
range	1200 W	12 A to 134.4 A	6 A to 67.2 A	1.5 A to 16.8 A	0.555 A to 6.216 A
	2000 W	20 A to 224.0 A	10 A to 112.0 A	2.5 A to 28.0 A	0.93 A to 10.36 A

3

8

Press OVP•OCP twice to finish the configuration.

The OCP trip point will be set. The OVP•OCP key turns off, and the measured value display appears.

Setting the detection time of OCP activation

You can set the amount of time that elapses after the OCP trip point is exceeded (the amount of time during which the OCP trip point is continuously exceeded) before the output is turned off (CF24). This is useful when you do not want the output to be turned off due to short-term overloads.

Checking OCP operation

If the current setting limit is set to on (CF22: חם), the output current cannot be set higher than the OCP trip point, so you cannot verify the OCP operation.

- Short the output terminals.
- Turn the POWER switch on.
- Check that the OUTPUT LED is turned off.
- Set the output current to a value lower than the OCP trip point.
- 5 Press OUTPUT to turn output on.

The OUTPUT LED lights.

6 Slowly turn the CURRENT knob clockwise until the OCP is activated.

When the output current exceeds the OCP trip point, an alarm will occur. The ALM LED lights, and the OUTPUT LED blinks.

Alarm indication when OCP is activated

Check that output has turned off, or breaker trip (2000W model only).

If the output turns off, press ALM CLR (SHIFT + SET) to clear the alarm. If you do not change the output current, the OCP will be activated again.

Front-panel output terminal overcurrent protection (FOCP)

Front-panel output terminal overcurrent protection (FOCP) is activated when the output current from the front-panel output terminal exceeds 10 A (typical value). The trip point is fixed.

If the FOCP trip point is lower than the OCP trip point, OCP is prioritized.

You can select using CONFIG settings whether to trip the breaker when the front-panel output terminal overcurrent protection (FOCP) function is activated (CF25: $_{\Box n}/_{\Box}FF$) (2000W model only).

Alarm indication when FOCP is activated

Overheat protection (OHP)

Overheat protection (OHP) is activated when the PWR-01's internal temperature rises to an abnormal level.

- When the PWR-01 is used in an environment that exceeds its operating ambient temperature range (0 °C to +50 °C).
- · When the PWR-01 is used with its air inlet or outlet port blocked.
- · When the fan motor has stopped.

Alarm indication when OHP is activated

If you do not fix the problem that caused the OHP to be activated, OHP will be activated again even if you turn the POWER switch off and on (p.68).

Incorrect sensing connection protection (SENSE)

Incorrect sensing connection protection is activated when the sensing wires are not connected securely or when the wires are connected with the polarities reversed.

It is also activated when the sensing voltage exceeds the maximum compensation voltage. For the maximum sensing compensation voltage of this product, see chapter 7 "Specifications" (p.126, p.129, p.132, p.135).

Alarm indication when incorrect sensing connection protection (SENSE) has been activated

Low AC input protection (AC-FAIL)

Low AC input protection is activated when a low AC power line input voltage is detected.

You can select using the CONFIG settings whether to hold or release the alarm state (CF20: $BFE/R_{u}E_{D}$) even after the cause of the AC-FAIL is removed after the low AC input protection (AC-FAIL) is activated.

Alarm indication when low AC input protection (AC-FAIL) is activated

Communication monitoring (WATCHDOG)

The watchdog function monitors the SCPI command communication status. Communication is assumed to have stopped if there is no communication within the time period specified by the communication monitoring timer setting (CF21).

The function operates regardless of whether the product is in remote or local (panel control) mode. If you are not using remote control (commands), set communication monitoring off using a timer setting.

In the alarm state, turn off communication monitoring before clearing the alarm.

Alarm indication based on communication monitoring (watchdog)

Shutdown (SD)

The shutdown function allows you to turn off the output by applying a signal to pin 16 of the J1 connector when an abnormal condition occurs (p.103).

To release the shutdown (SD) function, turn the POWER switch off and then back on.

You can select using CONFIG settings whether to trip the breaker when a shutdown (SD) is activated (CF25: $_{\Box n}/_{\Box}FF$) (2000W model only).

Alarm indication when the shutdown (SD) function is activated

Master-slave parallel operation protection (PRL ALM)

If a slave unit stops due to an error during master-slave parallel operation, the master unit detects the alarm and shuts down the output of the entire system.

This function protects devices by preventing the master unit and the remaining slave units from continuing the output.

Connect pin 14 of the J1 connectors of the master unit and slave units.

To release PRL ALM, turn the POWER switch off and then back on.

You can select using CONFIG settings whether to trip the breaker when the master-slave parallel operation protection (PRL ALM) function is activated (CF25: $_{\Box O}$ / OFF) (2000W model only).

Alarm indication when parallel alarm (PRL ALM) is activated

Setting limit protection function

Voltage setting limit

The maximum voltage that can be set is limited to about 95 % of the OVP trip point to prevent OVP activation due to mistaken operations.

By factory default, the voltage setting limit is set to on (CF23: un).

If you enable the voltage setting limit when the voltage setting is higher than 95 % of the OVP trip point, the voltage setting is retained, but the OVP trip point is changed to 105 % of the voltage setting.

The voltage setting limit (CF23) on/ off state is synchronized to undervoltage limit (UVL).

OVP trip point 80 V	Example 1: Enable the voltage setting limit, set the OVP trip point to 80 V, and then set the voltage
About 95 % (76 V) Voltage setting	Because the voltage setting is limited to approximately 95 % of the OVP trip point, the voltage can be set up to 76 V.
OVP trip point	Example 2: Enable the voltage setting limit, set the voltage to 80 V, and then set the OVP trip point
About 105 % (84 V) Voltage setting 80 V	Because the OVP trip point is limited to approximately 105 % of the voltage setting, the OVP trip point can be set at 84 V or higher.
About 105 % (84 V) OVP trip point 81 V	Example 3: Disable the voltage setting limit, set the OVP trip point to 81 V, and then enable the setting limit (with the volt- age setting at approximately 80 V)
Voltage setting 80 V	When the setting limit is enabled, the OVP trip point is changed to approximately 105 % of the voltage setting. The voltage set- ting remains at 80 V, and the OVP trip point is changed to 84 V.

. . . .

Undervoltage limit (UVL)

Undervoltage limit (UVL) limits the minimum voltage that can be set to the UVL trip point. Undervoltage limit (UVL) is synchronized to the on/off state of voltage setting limit (CF23). By factory default, the voltage setting limit is set to on (CF23: \Box).

If you enable the voltage setting limit when the voltage setting is less than the set UVL trip point, the voltage setting is retained, but the UVL trip point is changed to the voltage setting.

Setting the UVL trip point

Press OVP•OCP twice.

The present UVL trip point is displayed.

Display example of the UVL setting

Turn the VOLTAGE knob to set the UVL trip point (p.50).

UVL setting range: 0 % to 105 % of the rated output voltage

	L type	ML type	MH type	H type
UVL setting range	0 V to 42 V	0 V to 84 V	0 V to 252 V	0 V to 682.5 V

Press OVP•OCP to finish the configuration.

The UVL trip point will be set. The OVP•OCP key turns off, and the measured value display appears.

Current setting limit

2

3

The maximum current that can be set is limited to about 95 % of the OCP trip point to prevent OCP activation due to mistaken operations.

By factory default, the current setting limit is set to on (CF22: ___).

If you enable the current setting limit when the current setting is higher than 95 % of the OCP trip point, the current setting is retained, but the OCP trip point is changed to 105 % of the current setting.

Power limit (POWER LIMIT)

This function limits the output power to a value that is approximately 105 % of the rated output power. This function changes the output voltage or output current according to the changes in the load resistance (p.45).

When the output limit function has been activated, the ALM LED blinks (p.50).

	400W	800W	1200W	2000W
Power limit	420 W	840 W	1260 W	2100 W

CONFIG Settings

Use the CONFIG settings to set the PWR-01 system configuration. You can set and display the following parameters in the CONFIG settings.

- Effect: indicates that the parameter is affected when the panel settings are reset (CF00).
 - indicates that the parameter may be affected when the LAN interface settings are reset (CF60: LE ,/ dEF).
- Note: $\ \circ \ \text{indicates that the change is immediately applied}$
 - \bigtriangleup indicates that the change is applied the next time the power is turned on
 - \Diamond indicates that the change is applied when CF60: <code>RPPL</code> is executed

Display switching	Parameter number	Mnemonic		Setting/ display	Effect	Note
Basic	CF00	CF00 ^I	Reset	Resets the panel settings	_	0
	CF01 ²	ЪLЕ	Bleeder	Sets the bleeder circuit	_	0
	CF02	Pr io	Priority	Output-on startup state	_	0
	CF03	U ir	V.I.R	Internal resistance setting (VIR)	•	0
	CF04	55Er	S.Start CCrise	Soft start time (CC mode)	•	0
	CF05	55E.F	S.Stop CCfall	Soft stop time (CC mode)	•	0
	CF06	55.U.r	S.Start CVrise	Soft start time (CV mode)	•	0
	CF07	55.U.F	S.Stop CVfall	Soft stop time (CV mode)	•	0
	CF08	and	On delay	Output-on delay setting	•	0
	CF09	oFF.d	Off delay	Output-off delay setting	•	0
	CF10	EEC	Ext. CC	CC control using an external voltage/ external resistance	•	0
	CF11	E.C.U	Ext. CV	CV control using an external voltage/ external resistance	•	0
	CF12	Երոն	Control range	CV/ CC control range		0
	CF13 ²	Որոն	Monitor range	Voltage/ Current monitor output range		0
	CF14	Eout	Ext. on/ off	External control for turning output on/ off	•	0
	CF15	ELoG	Ext. logic	External control logic for turning output on/ off	_	0
	CF16	5650	Stat. CC. pol	CC status signal polarity	_	0
	CF17	5250	Stat. CV. pol	CV status signal polarity	_	0
	CF18	525.0	Stat. Output. pol	Output status signal polarity	_	0
	CF19	5628	Stat. Alarm. pol	Protection function/ alarm status signal polarity	_	0
Alarm	CF20 ²	R-CU	Alarm recovery	Status when recovering from AC-FAIL protection		\bigtriangleup
	CF21	8405	Watchdog	Communication monitoring (WATCHDOG) timer		0
	CF22	ECLR	CC limit auto	Current setting limit	•	0
	CF23	CULR	CV limit auto	Voltage setting limit	•	0
	CF24 ²	oC.dL	OCP delay	Output off after OCP detection	_	0
	CF25 ^{2 3}	۲r iP	Breaker trip	Breaker trip when the OVP/ OCP/ FOCP/ SD/ PRL ALM		\bigtriangleup
Usability	CF30	5C I	Short cut 1	CONFIG parameter shortcut registration (SC1)	_	0
	CF31	502	Short cut 2	CONFIG parameter shortcut registration (SC2)		0
	CF32	503	Short cut 3	CONFIG parameter shortcut registration (SC3)		0
	CF33	ЬЕЕР	Веер	Buzzer on/ off	_	0
	CF34 ²	Ъс і	Brightness	Panel display brightness	_	0
	CF35	RNEr	Ammeter	Slave unit display during master-slave parallel operation	_	0
System	CF40	LAn	LAN	LAN interface setting	∎4	\bigtriangleup
	CF41	مكت	USB	USB interface setting	_	\bigtriangleup
	CF42	232	RS232C	RS232C interface setting	_	\bigtriangleup
	CF43	Er RE	Trace	SCPI communication error display	_	0
	CF44 ²	PR-R	Parallel	Master-slave parallel operation	_	\bigtriangleup
	CF45	Pon	Power on	Output state at power-on	_	\bigtriangleup

••••

Display switching	Parameter number	Mnemonic		Setting/ display	Effect	Note
LAN ⁵	CF50	ıР (lp addr. 1	IP address display (1)	_	_
	CF51	'65	lp addr. 2	IP address display (2)	_	_
	CF52	'63	lp addr. 3	IP address display (3)	_	_
	CF53	,P4	lp addr. 4	IP address display (4)	_	_
	CF54	አጸ (HW. addr. 1, 2	MAC address display (1) and (2)	_	_
	CF55	h82	HW. addr. 3, 4	MAC address display (3) and (4)	_	_
	CF56	h83	HW. addr. 5, 6	MAC address display (5) and (6)	_	_
	CF60	եսօէ	LAN Reboot	LAN setting reset (LCI/ DEF)/ apply (APPL)	_	0
	CF61	Rdr	Address config	IP address assignment method		\triangle / \diamondsuit
	CF62	5. iP (Static IP 1	Manual IP address setting (1)		\triangle / \diamondsuit
	CF63	5. ,82	Static IP 2	Manual IP address setting (2)		\triangle / \diamondsuit
	CF64	5. iP3	Static IP 3	Manual IP address setting (3)		\triangle / \diamondsuit
	CF65	5. iP4	Static IP 4	Manual IP address setting (4)		\triangle / \diamondsuit
	CF66	აიც	Subnet Mask	IP address subnet mask		\triangle / \diamondsuit
	CF67	Пор	VMCB Dom.	Multichannel (VMCB) domain number	4	\bigtriangleup
	CF68	Ըհ	VMCB Ch.	Multichannel (VMCB) channel number	4	\bigtriangleup
USB	CF70	Цıd	V. ID	Vendor ID (VID) display	_	_
	CF71	Pid	P. ID	Product ID (PID) display	_	_
RS232C	CF72	ЪЯлд	Baud rate	RS232C baud rate	_	\bigtriangleup
Sequence	CF80	ProG	Program	Program's user code display (execute)	_	_
	CF81	rENL	Rem. Loop	Remaining program repetition count display	_	_
	CF82	r ENE	Rem. Time	Remaining program time display	_	_
	CF83	երնս	Trig. In	Trigger input signal polarity	_	0
	CF84	երնօ	Trig. Out	Trigger output signal polarity	—	0

1

The CF00 display does not change. You can also specify this parameter when the PWR-01 is being used as a slave unit. 2 3 4 5

Can be set only on the 2000W model.

This parameter is affected only when the LAN interface settings are reset (CF60: dEF). For details on the LAN interface settings, see the "Communication Interface Manual" on the included CD-ROM.

Displaying and setting CONFIG parameters

CF00, CF60, and CF80 are execution parameters of features. For the execution procedure, see the details of each CONFIG parameter.

Use the CONFIG key and the VOLTAGE knob to select the CONFIG parameter you want to set.

The CONFIG key lights. The voltmeter displays the parameter number. The ammeter displays the corresponding setting. Pressing CONFIG changes the tens digit. Turning the VOLTAGE knob changes the ones digit.

Pressing LOCAL changes the CONFIG parameter number to the mnemonic display (excluding CF00). Turning the VOLTAGE knob while holding down the LOCAL key switches the CONFIG parameter while retaining the mnemonic display.

Turn the CURRENT knob to change the value of the parameter.

To specify or display other parameters, repeat Step1 and Step2.

Hold down CONFIG until the measured value display appears, or press PWR DSPL.

There are parameters whose values are applied immediately, those whose values are applied after the power is turned off and then back on, and those whose values are applied when [RPPL] is executed using CF60 (*p.60*).

3

CONFIG parameter details

The details of CONFIG parameters are provided below.

CF00 ([FII]) Resets the panel settings

Select this to set the following parameters to their factory default settings (*p.144*). Then, press SET twice to execute the reset.

- Output on/ off
- · Output voltage
- Output current
- Overvoltage protection
- Overcurrent protection
- Undervoltage limit
- Internal resistance (CF03)

- Soft start/ stop time (CF04 to CF07)
- Output-on/ off delay (CF08/ CF09)
- Constant current control using an external voltage/external resistance (CF10)
- Constant voltage control using an external voltage/external resistance (CF11)
- External control for turning output on/off (CF14)
- Current/ voltage setting limit (CF22/ CF23)

Display		Description
- Տե	Reset	Resets the panel settings

CF01 (LE) Sets the bleeder circuit

Sets the bleeder circuit (p.82). You can turn the bleeder circuit off when you do not want current to be sinked by the internal bleeder circuit, such as when you are charging a battery.

When using master-slave parallel operation or series operation, use the same settings on all connected units.

You can also specify this parameter when the PWR-01 is being used as a slave unit.

Display		Description
د، ۵	Disable	The bleeder circuit is turned off.
norN	Normal	Normal bleeder (factory default setting)
ĥУР	Hyper	Hyper bleeder

CF02 (Pr.) Output-on startup state

Sets the prioritized operation mode when the output is turned on (p.49). When used as a slave device, CC is automatically prioritized.

Display		Description
EU	CV	CV (constant voltage) is prioritized (factory default setting)
55	CC	CC (constant current) is prioritized.

CF03 (Li .r) Internal resistance setting (VIR)

Sets the internal resistance (Rint) (p.84). The internal resistance setting range (p.84) varies depending on the model.

Display		Description
oFF	OFF	Variable internal resistance function is not used (factory default setting).
Rint (min) to	o Rint (max)	Rint (min) Ω to Rint (max) Ω

CF04 (בבבר) Soft start time (CC mode)

Sets the rise time of the output current (p.43). You can set the output current to rise gradually.

Display		Description
0.0	0.0	Disable soft start (factory default setting)
0.5 to 10.0	0.5 to 10.0	Soft start time, 0.5 s to 10.0 s

CF05 (\\F) Soft stop time (CC mode)

Sets the fall time of the output current (p.43). You can set the output current to fall gradually.

Display		Description
0.0	0.0	Disable soft stop (factory default setting)
0.5 to 10.0	0.5 to 10.0	Soft stop time, 0.5 s to 10.0 s

CF06 (느느니ㅋ) Soft start time (CV mode)

Sets the rise time of the output voltage (p.43). You can set the output voltage to rise gradually.

Display		Description
0.0	0.0	Disable soft start (factory default setting)
0.5 to 10.0	0.5 to 10.0	Soft start time, 0.5 s to 10.0 s

CF07 (느느님F) Soft stop time (CV mode)

Sets the fall time of the output voltage (p.43). You can set the output voltage to fall gradually.

Display		Description
0.0	0.0	Disable soft stop (factory default setting)
0.5 to 10.0	0.5 to 10.0	Soft stop time, 0.5 s to 10.0 s

CF08 (and) Output-on delay setting

You can set the delay from when the OUTPUT key is pressed to when the output actually turns on (p.42).

Display		Description
0.0	0.0	No delay (factory default setting)
0.5 to 99.9	0.5 to 99.9	Output-on delay time, 0.5 s to 99.9 s

CF09 (oFF.d) Output-off delay setting

You can set the delay from when the OUTPUT key is pressed to when the output actually turns off (p.42).

Display		Description
0.0	0.0	No delay (factory default setting)
0.5 to 99.9	0.5 to 99.9	Output-off delay time, 0.5 s to 99.9 s

CF10 (ELC) CC control using an external voltage/ external resistance

Enables or disables constant current control using an external voltage or external resistance (p.99).

Display		Description
oFF	OFF	Disabled (factory default setting)
on	ON	Enabled

CF11 (E[1]) CV control using an external voltage/ external resistance

Enables or disables constant voltage control using an external voltage or external resistance (p.97).

Display		Description
oFF	OFF	Disabled (factory default setting)
on	ON	Enabled

CF12 (ErnL) CV/ CC control range

Sets the range for performing constant current or constant voltage control using an external voltage or external resistance (p.97, p.99).

Reference voltage for external control (J1-3 REFOUT) is also set to 5.25 V (CF12: L_{D}) or 10.5 V (CF12: h_{1}) according to the range setting.

Display		Description
Lo	LOW	0 V to 5 V (factory default setting)
ከ፣	HIGH	0 V to 10 V

CF13 (유규요) Voltage/ Current monitor output range

Sets the voltage range when monitoring voltage or current (p.105). You can also set this parameter when the PWR-01 is being used as a slave unit.

Display		Description
Lo	LOW	0 V to 5 V (factory default setting)
ከ ,	HIGH	0 V to 10 V

CF14 (Eout) External control for turning output on/ off

Enables or disables output on/off control using an external contact (p.101) and enables or disables the output-on/ off delay function and soft start and soft stop functions. (p.42, p.43)..

Display		Description
oFF	OFF	Disabled (factory default setting)
on	ON	Enabled
Enh	Enhanced On	Enabled Use the output-on/ off delay and soft start and soft stop functions

CF15 (ELoL) External control logic for turning output on/ off

Sets the logic that is used for output on/ off control using an external contact (p. 101).

Display		Description
Lo	LOW	The output is turned on with a low signal (0 V to 0.5 V) or short circuit (factory default setting).
h ,	HIGH	The output is turned on with a high signal (4.5 V to 5 V) or open circuit.

CF16 (노노도) CC status signal polarity

Sets the polarity of the status signal for monitoring the constant-current mode (p.105).

Display		Description
nEG	Negative	Negative (factory default setting)
Роб	Positive	Positive

CF17 (노노님) CV status signal polarity

Sets the polarity of the status signal for monitoring the constant-voltage mode (p. 105).

Display		Description
nEG	Negative	Negative (factory default setting)
Роб	Positive	Positive

CF18 (노노노) Output status signal polarity

Sets the polarity of the status signal for monitoring the output-on state (p.105).

Display		Description
nEG	Negative	Negative (factory default setting)
Роб	Positive	Positive

CF19 (노노도) Protection function/ alarm status signal polarity

Sets the polarity of the status signal for monitoring the protection function or alarm (p.105).

Display		Description
~EC	Negative	Negative (factory default setting)
Роб	Positive	Positive

CF20 (R, []) Status when recovering from AC-FAIL protection

Sets the output status for when the AC power line returns to normal while a low AC input protection (AC-FAIL) is activated (p.56).

This parameter is applied when you turn the POWER switch off and on. You can also set this parameter when the PWR-01 is being used as a slave unit.

Display		Description
SAFE	Safe	The alarm status is retained even after the problem that caused the alarm is fixed. (factory default setting)
Ruto	Auto	The alarm status is cleared after the problem that caused the alarm is fixed (returns to the status before the alarm occurrence).

CF21 (님님 다) Communication monitoring (WATCHDOG) timer

Sets the interval for monitoring SCPI command communication (p.56).

The communication monitoring operates regardless of whether the product is in remote or local (panel control) mode.

If you are not using remote control (commands), set this to "DFF".

Display		Description
oFF	OFF	Communication monitor timer is set to off (factory default setting).
∣ to ∃000	1 to 3000	1 s, 3 s, 10 s, 30 s, 100 s, 300 s, 1000 s, 3000 s

CF22 ([[]R) Current setting limit

Sets whether to limit the output current setting at the OCP trip point (about 95 % of the OCP trip point) (*p*.53).

Display		Description
oFF	OFF	The setting is not limited.
on	ON	The setting is limited (factory default setting).

CF23 ([∐LR) Voltage setting limit

Sets whether to limit the output voltage setting at the OVP trip point (about 95 % of the OVP trip point) or at the UVL trip point (p.52).

Display		Description
٥FF	OFF	The setting is not limited.
on	ON	The setting is limited (factory default setting).

CF24 (DEdL) Output off after OCP detection

Sets the time from when an overcurrent is detected to when the output is turned off in steps of 100 ms.

You can also set this parameter when the PWR-01 is being used as a slave unit.

Display		Description
0.0	0.0	0.0 s (factory default setting)
0. to 2.0	0.1 to 2.0	0.1 s to 2.0 s

CF25 (Er P) Breaker trip when the OVP/ OCP/ FOCP/ SD/ PRL ALM (Only on the 2000W model)

Sets whether to trip the breaker (turn the POWER switch off) when the overvoltage protection (OVP), overcurrent protection (OCP), Front-panel output terminal overcurrent protection (FOCP), Shutdown (SD) or Master-slave parallel operation protection (PRL ALM) is activated (p.41).

This parameter is applied when you turn the POWER switch off and on. The setting is possible even when the product is used as a slave unit.

Display		Description
oFF	OFF	Not trip (turn the output off)
on	ON	Trip (turn the POWER switch off) (factory default)

CF30 (5[1) CONFIG parameter shortcut registration (SC1)

Registers a CONFIG setting parameter to the front panel's SC1 key (p. 79).

Display		Description
00	00	CONFIG parameter not registered (factory default setting)
🛾 to 99	01 to 99	CF01 to CF99

CF31 (노[2) CONFIG parameter shortcut registration (SC2)

Registers a CONFIG setting parameter to the front panel's SC2 key (p. 79).

Display		Description	
00	00	CONFIG parameter not registered (factory default setting)	
0 I to 99	01 to 99	CF01 to CF99	

CF32 (5[3) CONFIG parameter shortcut registration (SC3)

Registers a CONFIG setting parameter to the front panel's SC3 key (p.79).

Display		Description	
00		CONFIG parameter not registered (factory default setting)	
[] to 99	01 to 99	CF01 to CF99	

CF33 (LEEP) Buzzer on/ off

Turns the buzzer on and off.

The buzzer sounds when settings are reset to factory defaults, when a communication command error occurs, or when a preset memory or sequence program cannot be recalled.

Display		Description
oFF	OFF	Buzzer off
on	ON	Buzzer on (factory default setting).

CF34 (br) Panel display brightness

Sets the panel display brightness. The larger the number, the brighter the display.

Even if you specify the same number, the brightness may be different between individual products.

The brightness is not proportional to the setting.

You can also set this parameter when the PWR-01 is being used as a slave unit.

Display		Description	
to ⊓	1 to 7	Screen brightness adjustment (factory default setting: 7)	

CF35 (R미노r) Slave unit display during master-slave parallel operation

Sets whether the current or power on slave units is displayed during master-slave parallel operation. If the slave unit display is disabled, the ammeter shows "---."

Display		Description
٥٢٢	OFF	Slave unit display disabled (factory default setting)
on	ON	Slave unit enabled

CF40 (L 유슈) LAN interface setting

Enables or disables the LAN interface.

By setting this parameter to "_FF," you can disable the LAN interface function even when a LAN cable is connected.

This parameter is applied when you turn the POWER switch off and on.

Display		Description
oFF	OFF	LAN disabled
on	ON	LAN enabled (factory default setting).

CF41 (u노b) USB interface setting

Enables or disables the USB interface.

By setting this parameter to "_FF," you can disable the USB interface function even when a USB cable is connected.

This parameter is applied when you turn the POWER switch off and on.

Display		Description
oFF	OFF	USB disabled
on	ON	USB enabled (factory default setting).

CF42 (232) RS232C interface setting

Enables or disables the RS232C interface.

By setting this parameter to " $_{\Box}FF$," you can disable the RS232C interface function even when a RS232C cable is connected.

This parameter is applied when you turn the POWER switch off and on.

Display		Description
۵FF	OFF	RS232C disabled
00	ON	RS232C enabled (factory default setting).

CF43 (노- 뭐는) SCPI communication error display

Sets whether to display communication errors.

Display		Description
oFF	OFF	SCPI communication errors are not displayed (factory default set- ting).
on	ON	SCPI communication errors are displayed.

CF44 (PR-R) Starting master-slave parallel operation

Sets whether to use the PWR-01 as a master unit or slave unit in master-slave parallel operation (p.108).

If you want to use the PWR-01 as a master unit, set the total number of units. If you want to use the PWR-01 as a slave unit, select "占人吊山 (Slave)."

This parameter is applied when you turn the POWER switch off and on.

You can also set this parameter when the PWR-01 is being used as a slave unit.

Display		Description
SLAU	Slave	Use the PWR-01 as a slave unit.
¦ to ∃ ¹	1 to 3 ¹	Total number of units including the master unit (1: standalone operation (factory default setting) to 3)

1 Up to two units for 1200W models/ 2000W models.

CF45 (Pon) Output state at power-on

Sets the output condition that the PWR-01 will be in when the power is turned on (p.32). When you are using an external contact to turn the output off, this parameter is invalid. This parameter is applied when you turn the POWER switch off and on.

When setting this to " $\exists_{u} \vDash_{\Box}$ (Auto)" or " $\exists_{\Box} \sub_{\Box} \sub_{\Box}$ (Force)," set the status when recovering from AC-FAIL protection to clear the alarm status after the problem that caused the alarm is fixed (CF20: $\exists_{u} \nvDash_{\Box}$) (*p.68*).

Display		Description	
SAFE	Safe	Output off (factory default setting).	
Ruto	Auto	The output state that was in use immediately before the POWER switch was turned off.	
ForE	Force	Output on	

CF50 to CF53 (,P (to ,P4) IP address display

These parameters display the set IP addresses.

To set a fixed IP address, set it from the panel (CF62 to CF65) or from the Web browser interface. When you access the PWR-01 through a Web browser, do so under conditions in which a DHCP server or AUTO IP can be used.

For details on the Web browser interface, see the Communication Interface Manual on the included CD-ROM.

Parameter number	Display		Description
CF50	0. to 255.	0 to 255	First octet of the IP address
CF51	(), to 255.	0 to 255	Second octet of the IP address
CF52	0. to 255.	0 to 255	Third octet of the IP address
CF53	0 to 255	0 to 255	Fourth octet of the IP address

CF54 to CF56 (\R | to \R]) MAC address display

These parameters display the set MAC addresses.

MAC addresses are set to 00.0F.CE.xx.xx.xx (where x is a hexadecimal number between 0 and F).

Parameter number	Display		Description
CF54	00.0F	00.0F	First and second octets of the MAC address
CF55	E E.H.H	CE.xx	Third and fourth octets of the MAC address
CF56	ннн	XX.XX	Fifth and sixth octets of the MAC address

Display example of the MAC address "00.0F.CE.11.22.33"

<i>E F S 4</i> ∛ 8887 Å	EF55∛ EE11%	8855 ∛ 8888 %
CF54: 00.0F	CF55: CE.11	CF56: 22.33

Display	Я	Ь	Ε	Ч	Ε	F	
Hexadecimal	А	В	С	D	Е	F	

CF60 (book) LAN setting reset (LCI/ dEF)/ apply (APPL)

Sets whether to reset or apply the LAN interface settings (p.63).

Then, press SET twice to execute the reset or application.

If you select to reset the LAN interface settings (LE , (LCI)/ dEF (Default)), the security password will be cleared, and the PWR-01 will be in a security-disabled state.

If the LAN LED turns red (p.9), set the settings again.

For details on the LAN interface settings, see the "Communication Interface Manual" on the included CD-ROM.

Display		Description
LC ,	LAN Configuration Ini- tialize	Resets the LAN interface settings (to their factory default values)
45E	Default	The LAN interface and multichannel (VMCB) settings are reset (to their factory default values).
RPPL	Apply	The LAN interface is restarted, and the CONFIG settings are applied.
CF61 (Rdr) IP address assignment method

Sets the IP address assignment method.

Set whether to use (on: 1) or not use (off: 0) the following: DHCP server, AUTO IP function (automatic assignment), and MANUAL IP function (manual assignment).

If DHCP and AUTO IP are both set to on and an IP address is not assigned through a DHCP server, AUTO IP is used.

To use MANUAL IP, set DHCP and AUTO IP to off. The IP address that is assigned by the AUTO IP function is 169.254.x.x (where x is a number between 1 and 254).

This parameter is applied when you turn the POWER switch off and on or when you execute RPPL (Apply) with CF60.

Display		Description
00 (001	DHCP: off, AUTO IP: off, MANUAL IP: on
0 10	010	DHCP: off, AUTO IP: on, MANUAL IP: off
011	011	DHCP: off, AUTO IP: on, MANUAL IP: on
100	100	DHCP: on, AUTO IP: off, MANUAL IP: off
10 1	101	DHCP: on, AUTO IP: off, MANUAL IP: on
110	110	DHCP: on, AUTO IP: on, MANUAL IP: off (factory default setting)
111	111	DHCP: on, AUTO IP: on, MANUAL IP: on

CF62 to CF65 (노, P + to 노, P+) Manual IP address setting (MANUAL IP)

If you are not using the DHCP server or the AUTO IP function, set the IP address manually. To do so, use CF61 to set MANUAL IP to on.

This parameter is applied when you turn the POWER switch off and on or when you execute RPPL (Apply) with CF60.

Parameter number	Display		Description
CF62	(<u>)</u> to 255	0 to 255	First octet of the IP address
CF63	(<u>)</u> to 255	0 to 255	Second octet of the IP address
CF64	(<u>)</u> to 255	0 to 255	Third octet of the IP address
CF65	0. to 255	0 to 255	Fourth octet of the IP address

CF66 (느느님) IP address subnet mask

If you want to set the IP address manually (MANUAL IP), set the subnet mask prefix. To do so, use CF61 to set MANUAL IP to on.

This parameter is applied when you turn the POWER switch off and on or when you execute RPPL (Apply) with CF60.

Display		Description
15 to ∃ 1	16 to 31	Sets the subnet mask prefix

Examples:Display example when "16" is selected 25525500 Display example when "24" is selected 255255250

Display example when "3 I" is selected 255255255

CF67 (doff) Multichannel (VMCB) domain number

Set the multichannel domain number. PWR-01s that have the same domain number perform multichannel operations. If you do not want to use the multichannel function, set this to "[]" (this is the factory default setting).

This parameter is applied when you turn the POWER switch off and on.

For details on the multichannel function, see the Communication Interface Manual on the included CD-ROM.

Display		Description
0	0	The multichannel function is not used (factory default setting).
1 to 254	1 to 254	The domain number when the multichannel function is used.

CF68 ([h) Multichannel (VMCB) channel number

Set the multichannel channel number. Specify a unique number on the network. If you do not want to use the multichannel function, set this to "[]" (this is the factory default setting).

This parameter is applied when you turn the POWER switch off and on. For details on the multichannel function, see the Communication Interface Manual on the

included CD-ROM.

Display		Description
0	0	Master unit on the multichannel network (factory default setting).
to 30	1 to 30	Channel number of the slave unit on the multichannel network.

CF70 (Ц ය) Vendor ID (VID) display

This displays the USB vendor ID.

Display		Vendor ID.
0638	0b3E	0x0B3E

CF71 (P .d) Product ID display

This displays the USB product ID.

400W	mode	I	■ 800	W mode)
Display		Product ID:	Display		Product ID:
1049 1	1049	0x1049	104R	104A	0x104A
■ 1200V	N mod	el	■ 200	0W mod	lel
Display		Product ID:	Display		Product ID:
1046 1	104B	0x104B	1055	1055	0x1055

CF72 (bRud) RS232C baud rate

Sets the baud rate of the RS232C interface. This parameter is applied when you turn the POWER switch off and on.

Display		Baud rate
15	1.2	1200 bps
2.4	2.4	2400 bps
48	4.8	4800 bps
9.6	9.6	9600 bps
19.2	19.2	19200 bps (factory default setting)
38.4	38.4	38400 bps
57.6	57.6	57600 bps
1 15.2	115.2	115200 bps

CF80 (Program's user code display (execute)

Displays the user code for identifying the sequence program.

Press SET twice to execute the sequence program.

Display		Description
nonE	None	Sequence program not written (factory default setting)
0000 to 9999	0000 to 9999	Set user code

CF81 (rERL) Remaining program repetition count display

Displays the remaining repetition count of the sequence program in execution.

Display		Repetition Count
		Sequence program not running
C to 9999	0 to 9999	0 times to 9999 times
Nor E	More	10000 times to 99998 times
יה די	Infinity	Infinite

CF82 (- E 다는) Remaining program time display

Displays the remaining time of the sequence program in execution.

Display		Remaining time
		Sequence program not running
595 to 5	59 s to 1 s	59 seconds to 1 minute
59 N to N	59 m to 1 m	59 minutes to 1 minute
999 hto h	999 h to 1 h	999 hours to 1 hour
NorE	More	1000 hours or more
יה די	Infinity	Infinite

CF83 (ברנה) Trigger input signal polarity

Sets the polarity of the trigger input signal.

Trigger signals are used to resume a sequence step and to perform synchronized operation.

Display		Description
РЕг	Positive Trigger	Positive trigger (factory default setting)
ոեր	Negative Trigger	Negative trigger

CF84 (๒๓ นีอ) Trigger output signal polarity

Sets the polarity of the trigger output signal.

Trigger signals are output when a program step is resumed or when the output is turned on (must be set with a command).

Display		Description
Ptr	Positive Trigger	Positive trigger (factory default setting)
ոեր	Negative Trigger	Negative trigger

Preset Memory Function

There are three preset memory entries for saving combinations of voltage, current, OVP, OCP, and UVL settings. Saved settings can be recalled from the preset memory when needed.

Saving settings

Set the voltage, current, OVP, OCP, and UVL to the values you want to save.

................

Press MEMORY to select the preset memory (A, B, or C) to save them in.
The voltmeter, ammeter, PRESET A/ B/ C LED and SET key blink.
Each time you press MEMORY, the selected memory entry switches between A, B, C, and unselected.
If a preset memory entry already has settings saved, those will be displayed.

The selected PRESET LED lights, and the settings are saved.

Recalling settings

You can recall settings from the preset memory on the measured value display (when the SET key is off) or the setting display (when the SET key is lit).

If the output is on, the settings are applied to the output the moment they are recalled.

Press MEMORY to select the preset memory entry (PRESET A, B, or C) you want to recall the settings from.

The voltmeter, ammeter, PRESET A/ B/ C LED and SET key blink.

The saved settings are displayed.

Each time you press MEMORY, the selected memory entry switches between A, B, C, and unselected.

2 Check the settings, and then press SET.

The SET key and the selected PRESET LED light, and the voltage and current are displayed.

NOTE

If you hold down SET when recalling settings, the present settings will be saved to the preset memory entry.

Locking Panel Controls (Key Lock)

The key lock function is available to prevent the settings from being changed by mistake.

When the keys are locked (when the LOCK LED is lit), only the OUTPUT key is valid.

Configure all the settings, such as the output voltage and output current, as necessary.

Hold down LOCK (SHIFT+PWR DSPL) until the LOCK LED turns on.

The LOCK LED lights, and the keys are locked.

To unlock the keys, hold down LOCK again (SHIFT+PWR DSPL) until the LOCK LED turns off.

CONFIG Shortcut Function

There is a CONFIG shortcut function that allows up to three CONFIG parameters of your choice (SC1, SC2, and SC3) to be registered. Registered CONFIG parameters can be recalled with the SC key without having to enter the CONFIG menu.

Registering CONFIG shortcuts

- Press CONFIG four times (CF30).
- 2 Turn the VOLTAGE knob to select the CONFIG parameter number (CF30, CF31, or CF32) in which to register a shortcut.

CF30, CF31, and CF32 are assigned to SC1, SC2, and SC3, respectively.

Turn the CURRENT knob to set the CONFIG parameter number you want to register.

4 Hold down CONFIG until the measured value display appears, or press PWR DSPL.

The setting is are applied immediately.

Using CONFIG shortcuts

Press SHIFT+SC1, SC2, or SC3 in which the CONFIG parameter you want to recall is registered.

The registered CONFIG parameter is displayed.

Example in which "CF21" is being called with the SC1 key

Hold down CONFIG until the measured value display appears, or press PWR DSPL.

Switching from Remote Mode to Local Mode

When the PWR-01 is being controlled remotely, the RMT LED in the display area lights.

To switch the PWR-01 to local mode from the front panel, press LOCAL.

Advanced Features

This chapter describes how to use advanced operations such as the bleeder circuit function, variable internal resistance function, sequence function and synchronized operation.

Bleeder Circuit Function

MARNING Risk of electric shock. Set the bleeder circuit to on (CF01: □□□□Π/ ⊣님P) before you touch the output terminals. If it is set to off (CF01: □□□□Π/ ⊣님P), the voltage that was present when the output was on will remain at the output terminals even if you turn off the output or POWER switch.

Turn the bleeder circuit off when you do not want the internal bleeder circuit to sink output current. When you connect a battery, you can prevent excessive electrical discharges by turning the bleeder circuit off.

Set the bleeder circuit to off, normal bleeder, or hyper bleeder using a CONFIG setting (CF01).

When the POWER switch is turned on the next time, the PWR-01 starts with the settings that were in use the last time that the POWER switch was turned off.

Bleeder circuit	Displayed setting	Description
Off ¹	DIS	Bleeder circuit off
Normal bleeder	NORM	Bleeder circuit on
Hyper bleeder	НҮР	Bleeder circuit on. HB lights on the display. The fan speed is fixed to the maximum speed. Provides strong sink performance (see the table below). The fall time at no load is reduced to about 70 % of that using the nor- mal bleeder (reduction in test cycle time (takt time) is possible).

1 Even if the output terminals are open and the output is turned off or the voltage setting is at 0 V, up to several hundred millivolts of voltage may appear across the output terminals.

When using master-slave parallel operation or series operation, use the same settings on all connected units. You can also specify this parameter when the PWR-01 is being used as a slave unit.

Depending on whether the bleeder circuit setting, the sink current when an external voltage source is connected will vary.

Sink current (reference value) from an external voltage source according to the bleeder circuit setting

					Vout= Ou	utput termina	al voltage
Model	Bleeder circuit	Sink current					
woder	Diccuci circuit	5 Vout	10 Vout	15 Vout	20 Vout	30 Vout	40 Vout
PWR401L	Off	0.000 A	0.000 A	0.001 A	0.001 A	0.002 A	0.003 A
	Normal bleeder	0.381 A	0.347 A	0.312 A	0.277 A	0.208 A	0.139 A
	Hyper bleeder	0.583 A	0.546 A	0.512 A	0.477 A	0.409 A	0.339 A
PWR801L	Off	0.000 A	0.000 A	0.000 A	0.001 A	0.001 A	0.001 A
	Normal bleeder	0.730 A	0.660 A	0.590 A	0.525 A	0.386 A	0.248 A
	Hyper bleeder	1.130 A	1.060 A	1.000 A	0.930 A	0.780 A	0.640 A
PWR1201L	Off	0.000 A	0.001 A	0.001 A	0.001 A	0.001 A	0.002 A
	Normal bleeder	1.120 A	1.010 A	0.900 A	0.792 A	0.577 A	0.362 A
	Hyper bleeder	1.720 A	1.620 A	1.510 A	1.410 A	1.200 A	1.000 A
PWR2001L	Off	0.001 A	0.001 A	0.001 A	0.001 A	0.002 A	0.002 A
	Normal bleeder	1.850 A	1.680 A	1.510 A	1.330 A	0.983 A	0.632 A
	Hyper bleeder	2.840 A	2.670 A	2.490 A	2.320 A	1.970 A	1.630 A

Model	Bleeder circuit	Sink current					
woder	Dieeder circuit	5 Vout	10 Vout	20 Vout	40 Vout	60 Vout	80 Vout
PWR401ML	Off	0.000 A	0.000 A	0.000 A	0.001 A	0.001 A	0.002 A
	Normal bleeder	0.376 A	0.360 A	0.328 A	0.264 A	0.200 A	0.136 A
	Hyper bleeder	0.564 A	0.547 A	0.515 A	0.450 A	0.384 A	0.319 A
PWR801ML	Off	0.000 A	0.000 A	0.000 A	0.000 A	0.000 A	0.001 A
	Normal bleeder	0.754 A	0.721 A	0.656 A	0.526 A	0.395 A	0.265 A
	Hyper bleeder	1.128 A	1.096 A	1.029 A	0.901 A	0.769 A	0.640 A
PWR1201ML	Off	0.000 A	0.001 A	0.001 A	0.001 A	0.001 A	0.002 A
	Normal bleeder	1.141 A	1.092 A	0.994 A	0.797 A	0.601 A	0.404 A
	Hyper bleeder	1.700 A	1.650 A	1.550 A	1.360 A	1.160 A	0.970 A
PWR2001ML	Off	0.000 A	0.000 A	0.000 A	0.000 A	0.000 A	0.000 A
	Normal bleeder	1.850 A	1.770 A	1.600 A	1.280 A	0.963 A	0.641 A
	Hyper bleeder	2.760 A	2.680 A	2.520 A	2.200 A	1.880 A	1.560 A

Vout= Output terminal voltage

Vout= Output terminal voltage

Model	Bleeder circuit	Sink current					
Woder		10 Vout	20 Vout	50 Vout	100 Vout	200 Vout	240 Vout
PWR401MH	Off	0.000 A	0.001 A	0.001 A	0.001 A	0.001 A	0.002 A
	Normal bleeder	0.151 A	0.147 A	0.134 A	0.114 A	0.072 A	0.056 A
	Hyper bleeder	0.223 A	0.221 A	0.208 A	0.187 A	0.145 A	0.128 A
PWR801MH	Off	0.000 A	0.000 A	0.000 A	0.001 A	0.001 A	0.002 A
	Normal bleeder	0.304 A	0.295 A	0.267 A	0.221 A	0.128 A	0.091 A
	Hyper bleeder	0.441 A	0.432 A	0.407 A	0.364 A	0.279 A	0.250 A
PWR1201MH	Off	0.000 A	0.000 A	0.000 A	0.001 A	0.001 A	0.002 A
	Normal bleeder	0.442 A	0.429 A	0.392 A	0.331 A	0.208 A	0.159 A
	Hyper bleeder	0.661 A	0.648 A	0.610 A	0.546 A	0.419 A	0.370 A
PWR2001MH	Off	0.000 A	0.000 A	0.001 A	0.001 A	0.001 A	0.001 A
	Normal bleeder	0.719 A	0.701 A	0.640 A	0.537 A	0.328 A	0.245 A
	Hyper bleeder	1.080 A	1.060 A	0.995 A	0.894 A	0.688 A	0.605 A

Vout=	Output	terminal	vo	ltage
-------	--------	----------	----	-------

Model	Bleeder circuit	Sink current					
wodei	Diceder chedit	25 Vout	50 Vout	100 Vout	200 Vout	500 Vout	650 Vout
PWR401H	Off	0.000 A	0.001 A	0.001 A	0.002 A	0.004 A	0.005 A
	Normal bleeder	0.067 A	0.065 A	0.063 A	0.057 A	0.041 A	0.033 A
	Hyper bleeder	0.081 A	0.080 A	0.077 A	0.072 A	0.057 A	0.049 A
PWR801H	Off	0.000 A	0.000 A	0.001 A	0.003 A	0.007 A	0.009 A
	Normal bleeder	0.128 A	0.125 A	0.119 A	0.108 A	0.075 A	0.059 A
	Hyper bleeder	0.160 A	0.157 A	0.152 A	0.142 A	0.111 A	0.094 A
PWR1201H	Off	0.000 A	0.000 A	0.001 A	0.004 A	0.009 A	0.012 A
	Normal bleeder	0.197 A	0.192 A	0.184 A	0.167 A	0.118 A	0.094 A
	Hyper bleeder	0.231 A	0.227 A	0.219 A	0.204 A	0.160 A	0.140 A
PWR2001H	Off	0.001 A	0.001 A	0.001 A	0.001 A	0.008 A	0.010 A
	Normal bleeder	0.306 A	0.293 A	0.280 A	0.253 A	0.185 A	0.150 A
	Hyper bleeder	0.381 A	0.359 A	0.347 A	0.320 A	0.251 A	0.217 A

•••••

Variable Internal Resistance Function

The variable internal resistance function enables you to easily simulate rechargeable batteries, solar batteries, fuel cells, and other power supplies that have internal resistance. By setting the internal resistance value in constant voltage (CV) mode, you can decrease the output voltage according to the output current.

The variable internal resistance function can be configured only in constant voltage (CV) mode.

Use CONFIG parameter CF03 to set the internal resistance. If you are not using the variable internal resistance function, select off (factory default setting, CF03: OFF). VIR lights when the variable internal resistance function is set.

If the output voltage falls to or below 3 % of the rated voltage, the output voltage may not be stable. If the difference between the voltage setting and the output voltage (voltage drop due to internal resistance) is less than 20 % of the rated voltage, the accuracy of the resistance setting degrades. It cannot handle transient operation (variation).

Setting range

Vrtg: rated output voltage, Irtg: rated output current, Rint: internal resistance

0 <Rint (min) ≤Rint (max)

L type, ML type: Rint (max)= Vrtg/ Irtg MH type, H type: Rint (max)= Vrtg/ Irtg x 3/4

	PWR401L	PWR401ML	PWR401MH	PWR401H
Vrtg [V]	40	80	240	650
Irtg [A]	40	20	5	1.85
Rint [Ω]	0.001 to 1.000	0.001 to 4.000	0.01 to 36.00	0.1 to 263.5
Resolution ¹	0.001	0.001	0.01	0.1

	PWR801L	PWR801ML	PWR801MH	PWR801H
Vrtg [V]	40	80	240	650
Irtg [A]	80	40	10	3.7
Rint [Ω]	0.001 to 0.500	0.001 to 2.000	0.01 to 18.00	0.1 to 131.8
Resolution ¹	0.001	0.001	0.01	0.1

	PWR1201L	PWR1201ML	PWR1201MH	PWR1201H
Vrtg [V]	40	80	240	650
Irtg [A]	120	60	15	5.55
Rint [Ω]	0.001 to 0.333	0.001 to 1.333	0.01 to 12.00	0.01 to 87.84
Resolution ¹	0.001	0.001	0.01	0.01

	PWR2001L	PWR2001ML	PWR2001MH	PWR2001H
Vrtg [V]	40	80	240	650
Irtg [A]	200	100	25	9.25
Rint [Ω]	0.001 to 0.200	0.001 to 0.800	0.01 to 7.20	0.01 to 52.70
Resolution ¹	0.001	0.001	0.01	0.01

1 Resolution when FINE is in use

The maximum internal resistance that can be set during parallel operation is the value obtained by dividing Rint (max) during standalone operation by the number of units in parallel operation. The resolution is the value obtained by dividing the resolution during standalone operation by the number of units in parallel operation.

Sequence Function

The sequence function enables you to automatically execute programs that you have set in advance one operation at a time.

You cannot configure sequence programs from the panel. Programs are created using commands

Once a sequence program is executed through remote control, the program is written in the PWR-01, and you can execute this program from the panel.

When a program is written in the PWR-01, you can execute the program without a PC.

For details on sequence function, see the "Communication Interface Manual" in the included CD-ROM.

Writing and executing a sequence program

Only a single program can be written in the PWR-01. If you execute another program through remote control, the program is overwritten. When executing a program from the panel, the trigger source setting is invalid.

If a program is not written in the PWR-01, execute a sequence program through remote control.

This will cause the program to be written in the PWR-01. Then, you can execute the program even without a PC.

2 If triggers are set in steps, set the trigger input signal polarity (CF83) and trigger output signal polarity (CF84) using CONFIG settings.

The factory default setting is positive trigger.

Press OUTPUT to turn output on.

Press CONFIG nine times to display CF80.

The ammeter displays the user code that is written, and the SET key blinks. To prevent unintentional execution of sequences, be sure to check the user code.

Example of user code " 1234" displayed for CF80

5

Press SET, which is blinking.

The PWR-01 switches to standby mode, and CF80, user code, the SET key, and SEQ on the display blink.

6

Δ

Press SET to execute the program.

SEQ is lit while the program is running.

Synchronized Operation

Synchronized operation is a function that synchronizes settings and the resumption of sequence programs using trigger signals.

Different PWR-01 models (e.g., PWR400W and PWR800W) can be mixed and connected. Synchronized operation is also possible in parallel operation.

Synchronized operation has the following features. To perform synchronized operation, you need to configure various settings using commands through remote control. After configuration, synchronized operation can be performed without a PC.

Synchronization of voltage and current settings (trigger subsystem: TRANsient)

Output variation can be synchronized. This is useful when you want to synchronize to the operation of external devices. The trigger source needs to be set to hardware trigger wait state (TRIG:TRAN:SOURTRIGIN).

Synchronization of sequence program steps (trigger subsystem: PROGram)

The resumption of paused steps in a sequence program can be synchronized. On each model, the trigger input of specific steps needs to be set to on (PROG:STEP<n>:TRIGIN ON).

Set the trigger signal polarity using CONFIG settings (CF83: trigger input signal polarity, CF84: trigger output signal polarity) (p.76). Make the polarities of all trigger signals of connected devices the same. The factory default setting is positive trigger.

Synchronization pulses are signals with 100 µs widths.

The RS232C connector and TRIG IN connector are the same. When performing synchronized operation through remote control, RS232C cannot be used.

For details on the setting, see the "Communication Interface Manual" in the included CD-ROM.

Synchronized operation delay

The delay from when a TRIG IN signal is received to when a TRIG OUT signal is transmitted is 1 ms (typical value).

The delay from when a TRIG IN signal is received to when the voltage/ current is produced is 850 μ s (typical value).

When using a cascade connection as shown in connection example 2 (p.88), carefully consider the number of connected units and the delay.

Connection

Use a standard LAN cable (category 5 and straight) up to 30 m in length to make the connection. If you need to use a LAN cable longer than 30 m, please contact your Kikusui agent or distributor.

WARNING

Risk of electric shock.

- Do not touch the communication connectors while the power is turned ON.
- Do not leave the LAN cable connected to the PWR-01 when the other end is not connected.

When the PWR-01 is shipped from the factory, connector covers are attached to the communication connectors as shown in the figure on the left. Keep connector covers that you remove in a safe place. If you are not using a connector, attach the connector cover for safety reasons. If they are damaged or lost, contact your Kikusui agent or distributor.

The following figure shows the connector pinout when you are facing the rear panel.

Check that all PWR-01s that you will connect are turned off.

Remove the covers from the RS232C/ TRG IN connector and TRG OUT connector.

3

Connect all the PWR-01s with LAN cables.

If you want to synchronize the resumption of steps in a sequence program, you can cascade PWR-01s as shown in the following figure by setting the trigger output (PROG:STEP<n>:TRIGOUT ON) in steps.

800W model connection example 2

(only when synchronizing the resumption of steps in a sequence program)

4

External Control

This chapter explains external control and external monitoring using the J1 and J2 connectors.

Product Operation

The J1 or J2 connector on the rear panel of this product can be used to perform the following external controls.

- · Output voltage control using external voltage or external resistance
- · Output current control using external voltage or external resistance
- Turning output on and off using an external contact
- · Output shutdown control using an external contact
- Clearing alarms using an external contact
- Monitoring operation modes

About the J1/ J2 Connectors

When the PWR-01 is shipped from the factory, terminal covers are attached to the J1 and J2 connectors. If the cover is damaged or lost, contact your Kikusui agent or distributor.

Risk of electric shock.

Be sure to attach the cover when you are not using the J1 or J2 connector.

The connector parts necessary to connect to the J1 and J2 connectors are not included. Use parts that match the connectors to make the connections. The OP01-PWR-01 plug kit and OP03-PWR-01 external cable and connector set for making these connections is available as an option. The plug kit consists of connector parts made by WCON.

OP01-PWR-01 30 pin [93420] pieces

Housing for the J1 connector

and J2 connector, 1 piece each

OP03-PWR-01 [93500]

Housing for the J1 connector and J2 connector, 1 piece each

For information about how to obtain these tools or replacement parts, contact your Kikusui agent or distributor.

■ J1 and J2 connectors

1

聞手

	J1 connector	J2 connector
Connector type	WF2549-2WR10S3T01 (WCON)	WF2549-2WR03S3T01(WCON)
Housing type	WF2549-2H10W01 (WCON)	WF2549-2H03W01 (WCON)
Terminal (pin)	WF2549-TPS302 (WCON)	WF2549-TPS302 (WCON)
Wire diameter (core wire)	AWG22 or AWG24	AWG22 or AWG24
Manual pressure crimp tool	SN-28B (IWISS) or an equivalent product ¹	SN-28B (IWISS) or an equivalent product ¹

When AWG22 wires are used, even if they are crimped with compatible slots (AWG22-20) indicated on the crimping tool, coupling may not be sufficient. If this is the case, use smaller slots (AWG28-24) to crimp the wires further. When crimping, be careful not to break the lock flip.

3

Attaching a core

As a measure against noise, you need to attach a core to the cable that will be connected to the J1 connector (p.142).

The core is not included. Use an appropriate core.

Recommended core: E04SRS251512 by SEIWA ELECTRIC MFG. CO., LTD.

Unlock and open the core.

Wrap the cable once (two turns) around either half of the open core.

Wrap the cable so that the distance between the core and the J1 connector is within 30 mm.

Close the core making sure not to pinch the cable.

Check that the core is locked securely in place.

J1 connector pin arrangement

Pin number positions when you are facing the rear panel

Pin No.	Signal name	Description		
J1-1	VPGM	minal used to control the output voltage with an external voltage or external resistance. / to 5 V; 0 % to 100 % of the rated output voltage (CF12: ال ال). / to 10 V; 0 % to 100 % of the rated output voltage (CF12: ال ال).		
J1-2	VMON	but voltage monitor. to 100 % of the rated output voltage is generated as a voltage between 0 V and 5 V (CF13: נם) voltage between 0 V and 10 V (CF13: ר ו).		
J1-3	REF OUT	ference voltage for external resistance control. 5.25 V (CF12: נם) / 10.5 V (CF12: הן), maximum tput current: 2.5 mA.		
J1-4	PRL ON	when parallel operation is in use and when output is on (output through an open-collector photo-upler).		
J1-5	A GND	xternal signal common for pins 1 to 3, 6 to 9, 11, 12, 14, 16, and 20. /hen remote sensing is not used, this is at the same electric potential as the negative output termi- al. When remote sensing is used, this is at the same electric potential as the negative electrode (-S) f sensing input.		
J1-6	ALM CLEAR	Alarm clear terminal. Alarms are cleared when a low level signal (0 V to 0.5 V) is received or shorted.		
J1-7	ISUM	Current output terminal for parallel operation.		
J1-8	PRL OUT	Positive output terminal for parallel operation.		
J1-9	PRL COMP IN	Correction signal input terminal for parallel operation.		
J1-10	A GND	External signal common for pins 1 to 3, 6 to 9, 11, 12, 14, 16, and 20. When remote sensing is not used, this is at the same electric potential as the negative output termi- nal. When remote sensing is used, this is at the same electric potential as the negative electrode (-S) of sensing input.		
J1-11	IPGM	Terminal used to control the output current with an external voltage or external resistance. 0 V to 5 V; 0 % to 100 % of the rated output current (CF12: L o). 0 V to 10 V; 0 % to 100 % of the rated output current (CF12: h i).		
J1-12	IMON	Output current monitor. 0 % to 100 % of the rated output current is generated as a voltage between 0 V and 5 V (CF13: L _) or a voltage between 0 V and 10 V (CF13: h _).		
J1-13	PRL COM	Common for pin 4.		
J1-14	PRL ALM	On when a protection function is activated during parallel operation or when an output shutdown sig- nal is being received.		
J1-15	A GND	External signal common for pins 1 to 3, 6 to 9, 11, 12, 14, 16, and 20. When remote sensing is not used, this is at the same electric potential as the negative output termi- nal. When remote sensing is used, this is at the same electric potential as the negative electrode (-S) of sensing input.		
J1-16	SHUT DOWN	Output shutdown control terminal. The output is turned off when set to LOW (0 V to 0.5 V) or shorted.		
J1-17	OUTPUT CONT	Output on/off terminal. On when set to LOW (0 V to 0.5 V) or shorted; off when set to HIGH (4.5 V or 5 V) or open (CF15: Lo) On when set to HIGH (4.5 V to 5 V) or open; off when set to LOW (0 V or 0.5 V) or shorted (CF15: ho)		
J1-18	PRL COMP OUT	Correction signal output terminal for parallel operation.		
J1-19	PRL IN-	Negative input terminal for parallel operation.		
J1-20	PRL IN+	Positive input terminal for parallel operation.		

•••••

J2 connector pin arrangement

Pin number positions when you are facing the rear panel

Pin No.	Signal name	Description
J2-1	STATUS COM	Common for pins 2 to 6. ¹
J2-2	OUT ON STATUS	Outputs a signal when output is on (output through an open-collector photocoupler). ²
J2-3	PWR ON STATUS	Outputs a low level signal when the power is on (output through an open-collector photocoupler). ²
J2-4	ALM STATUS	Outputs a signal when a protection function (OVP, OCP, FOCP, OHP, SENSE, AC-FAIL, WATCH-DOG) is activated or when an output shutdown signal is being received (output through an open-collector photocoupler). ²
J2-5	CV STATUS	Outputs a signal during CV mode (output through an open-collector photocoupler). ²
J2-6	CC STATUS	Outputs a signal during CC mode (output through an open-collector photocoupler). ²

The status common is floating (isolation voltage of 800 V or less). It is isolated from the control circuit. Open collector output:Maximum voltage: 30 V. Maximum current: 8 mA. 1

2

Notes for Connecting External Voltage (Vext)

This section contains notes for controlling the output using external voltage (Vext).

A GND terminal

The electric potential of A GND (J1-5, J1-10, and J1-15) of the J1 connector that Vext is connected to varies depending on whether remote sensing is used.

- When remote sensing is not used: Same electric potential as the negative output terminal
- When remote sensing is used: Same electric potential as the negative electrode (-S) of sensing input

Floating

CAUTION In a system that uses external control, do not ground the Vext output, that is, leave it floating. If you do, the PWR-01 output may short and burn out the control cable.

When using shielded cables

CAUTION Do not connect the shield to Vext and PWR-01 at the same time. If you do, the PWR-01 output may short and burn out the control cable.

When using shielded cables, connect the shield to either Vext or the PWR-01. The following figure shows an example of the shield connected to the Vext chassis terminal.

System that controls multiple PWR-01s with multiple Vexts

CAUTION Connect the GND (negative) terminals between each Vext, but do not connect the negative output terminals between each PWR-01. Not following this rule may cause the system to malfunction or damage the devices.

When the GND (negative) terminals between each Vext is connected ([1]), the path connecting the A GND between each PWR-01 is formed. If you connect the negative output terminals between each PWR-01, an unintended current loop shown in the following figure will be created. This current loop may cause the system to malfunction or damage the devices.

In a system that controls multiple PWR-01s with multiple Vexts, such as that shown in the following figure, we recommend that you do not connect [1] and [2]. If you need to for systematic reasons, connect either [1] or [2].

System that controls PWR-01s connected in parallel using a single Vext

CAUTION Connect only a single PWR-01 directly to Vext through a control cable. Not following this rule may cause the system to malfunction or damage the devices.

In a system that uses a single Vext to control PWR-01s connected in parallel, such as that shown in the following figure, only a single PWR-01 can be connected directly to Vext through a control cable. Connect other PWR-01s through isolators.

The number of PWR-01s that can be connected directly is also one when using a system that controls the output through an external contact using a sequencer or the like.

NOTE

Output Voltage Control

This section explains how to control the output voltage using an external voltage (Vext) or an external variable resistor (Rext) of approximately 10 k Ω .

If no load is connected, it takes some time for the output voltage to decrease.

WARNING Risk of electric shock.

- Ensure that the insulation of Vext or Rext and the connected cable is greater than or equal to the isolation voltage of the PWR-01. For details on the isolation voltage of each model, see Chap.7 "Specifications" (p.123).
- When using shielded cables for the connection, protect the uncovered sections of the shielded cable by using insulation tubes whose withstand voltage is greater than the PWR-01's isolation voltage.

Control using an external voltage (Vext)

To use an external voltage (Vext) to control the output voltage, set CV control using an external voltage or external resistance to on (CF11: $_{\Box \Box}$) in CONFIG settings.

The output voltage (Eo) varies in the range of 0 to the rated output voltage (Ertg) when the external voltage (Vext) is changed in the range of 0 V to 5 V (CF12: L_{D}) or in the range of 0 V to 10 V (CF12: h_{D}).

External voltage (Vext) 0 V to 5 V (CF12: L D)

Eo = Ertg×Vext /5 [V] Vext = 5×Eo /Ertg [V] External voltage (Vext) 0 V to 10 V (CF12: h ,) Eo = Ertg×Vext /10 [V] Vext = 10×Eo /Ertg [V]

External voltage (Vext) connection

• The signal cable may burn out. Do not connect the Vext output, that is, leave it floating. Risk of damage.

- · Pay careful attention to the polarity of Vext.
- Do not apply a voltage of 10.5 V or greater or a reverse voltage across pins 1 and 5 of the J1 connector.

Use a low-noise, stable voltage source for Vext. The noise in Vext is multiplied by the amplification factor of the PWR-01 and appears in the output. Therefore, the output ripple noise may not meet the specifications of the PWR-01.

To reduce the influence of noise on the output, connect a 2-core shielded wire or a twisted-pair wire across Vext, and keep the wire as short as possible. If the wiring between the PWR-01 and the external contact is long, it becomes easy for noise to influence the operation of the PWR-01. Even if you use cables that are designed to suppress

noise, the PWR-01 may not operate properly.

If you use a shielded cable, connect the shield to the negative output terminal. If the shield needs to be connected to the Vext side, see "Notes for Connecting External Voltage (Vext)"(p.95).

Use pins 1 and 5 of the J1 connector.

Control using an external resistance (Rext)

By using an external resistance (Rext) to change the voltage-divider ratio of the reference voltage (J1-3 REF OUT), you can change the output voltage (Eo) to a value in the range of 0 to the 105 % of the rated output voltage (Ertg).

To use an external resistance (Rext) to control the output voltage, set CV control using an external voltage or external resistance to on (CF11: ___) in CONFIG settings.

In CONFIG settings (CF12), set the external voltage (Vext) range and reference voltage (J1-3 REF OUT).

The output voltage (Eo) varies in the range of 0 to the rated output voltage (Ertg) when the external voltage (Vext) is changed in the range of 0 V to 5 V (CF12: L $_{\Box}$) or in the range of 0 V to 10 V (CF12: L $_{\Box}$).

Reference voltage (REF OUT) 5.25 V	Reference voltage (REF OUT) 10.5 V
External voltage (Vext) 0 V to 5 V (CF12: L_)	External voltage (Vext) 0 V to 10 V (CF12:
Eo = Ertg×Vext /5 [V]	Eo = Ertg×Vext /10 [V]
Vext = 5×Eo /Ertg [V]	Vext = 10×Eo /Ertg [V]

External resistance (Rext) connection

For Rext, use a resistor that is rated at approximately 10 k Ω , 1/2 W or greater, that has a low temperature coefficient, and that will change little over time. Examples of such resistors are metal film or wire wound resistors.

To reduce the influence of noise on the output, connect a 2-core shielded wire or a twisted-pair wire across Rext, and keep the wire as short as possible. If the wiring between the PWR-01 and

the external contact is long, it becomes easy for noise to influence the operation of the PWR-01. Even if you use cables that are designed to suppress noise, the PWR-01 may not operate properly.

If you use a shielded cable, connect the shield to the negative output terminal. Use pins 3, 1, and 5 of the J1 connector.

ы)

Output Current Control

This section explains how to control the output current using an external voltage (Vext) or an external variable resistor of approximately 10 k Ω (Rext).

WARNING Risk of electric shock.

- Ensure that the insulation of Vext or Rext and the connected cable is greater than or equal to the isolation voltage of the PWR-01. For details on the isolation voltage of each model, see Chap.7 "Specifications" (*p.123*).
- When using shielded cables for the connection, protect the uncovered sections of the shielded cable by using insulation tubes whose withstand voltage is greater than the PWR-01's isolation voltage.

Control using an external voltage (Vext)

To use an external voltage (Vext) to control the output current, set CC control using an external voltage or external resistance to on (CF10: pn) in CONFIG settings.

The output current (Io) varies in the range of 0 to the rated output current (Irtg) when the external voltage (Vext) is changed in the range of 0 V to 5 V (CF12: L_{D}) or in the range of 0 V to 10 V (CF12: h_{D}).

External voltage (Vext) 0 V to 5 V (CF12: L D)

lo = Irtg×Vext /5 [A] Vext = 5× lo / Irtg [A] External voltage (Vext) 0 V to 10 V (CF12: h ,) lo = Irtg×Vext /10 [A] Vext = 10× lo / Irtg [A]

External voltage (Vext) connection

• The signal cable may burn out. Do not connect the Vext output, that is, leave it floating. Risk of damage.

- Pay careful attention to the polarity of Vext.
- Do not apply a voltage of 10.5 V or greater or a reverse voltage across pins 11 and 15 of the J1 connector.

Connect a low-noise, stable voltage source to Vext. The noise in Vext is multiplied by the amplification factor of the PWR-01 and appears in the output. Therefore, the output ripple noise may not meet the specifications of the PWR-01.

To reduce the influence of noise on the output, connect a 2-core shielded wire or a twisted-pair wire across Vext, and keep the wire as short as possible. If the wiring between the PWR-01 and the external contact is long, it becomes easy for noise to influence the operation of the PWR-01. Even if you use cables that are designed to

suppress noise, the PWR-01 may not operate properly.

If you use a shielded cable, connect the shield to the negative output terminal. If the shield needs to be connected to the Vext side, see "Notes for Connecting External Voltage (Vext)"(p.95).

Use pins 11 and 15 of the J1 connector.

Control using an external resistance (Rext)

By using an external resistance (Rext) to change the voltage-divider ratio of the reference voltage (J1-3 REF OUT), you can change the output current (Io) to a value in the range of 0 to the 105 % of the rated output current (Irtg).

To use an external resistance (Rext) to control the output current, set CC control using an external voltage or external resistance to on (CF10: $_{\Box \Box}$) in CONFIG settings.

In CONFIG settings (CF12), set the external voltage (Vext) range and reference voltage (J1-3 REF OUT).

The output current (Io) varies in the range of 0 to the rated output current (Irtg) when the external voltage (Vext) is changed in the range of 0 V to 5 V (CF12: L $_{\Box}$) or in the range of 0 V to 10 V (CF12: L $_{\Box}$).

Reference voltage (REF OUT) 5.25 V External voltage (Vext) 0 V to 5 V (CF12: Lo)
lo = Irtg×Vext /5 [A]
Vext = 5× lo / Irtg [A]

Reference voltage (REF OUT) 10.5 V External voltage (Vext) 0 V to 10 V (CF12: h ,) lo = Irtg×Vext /10 [A] Vext = 10× lo / Irtg [A]

External resistance (Rext) connection

For Rext, use a resistor that is rated at approximately 10 k Ω , 1/2 W or greater, that has a low temperature coefficient, and that will change little over time. Examples of such resistors are metal film or wire wound resistors.

To reduce the influence of noise on the output, connect a 2-core shielded wire or a twisted-pair wire across Rext, and keep the wire as short as possible. If the wiring is long, it becomes

easy for noise to influence the operation of the PWR-01. Even if you use wires that are designed to suppress noise, the PWR-01 may not operate properly.

If you use a shielded cable, connect the shield to the negative output terminal.

Use pins 3, 11, and 15 of the J1 connector.

Controlling the Output On and Off States

This section explains how to use an external contact to control the output on and off states.

/ WARNING

Risk of electric shock.

- Ensure that the insulation of external contact (S) and the connected cable is greater than or equal to the isolation voltage of the PWR-01. For details on the isolation voltage of each model, see Chap.7 "Specifications" (p. 123).
- When using shielded cables for the connection, protect the uncovered sections of the shielded cable by using insulation tubes whose withstand voltage is greater than the PWR-01's isolation voltage.

To reduce the influence of noise on the output, connect a 2-core shielded wire or a twistedpair wire across the external contact, and keep the wire as short as possible. If the wiring is long, it becomes easy for noise to influence the operation of the PWR-01. Even if you use cables that are designed to suppress noise, the PWR-01 may not operate properly.

If you use a shielded cable, connect the shield to the negative output terminal.

To use an external contact to control the output on and off states, set the appropriate CON-FIG parameter (CF 15: nn). Then, select the logic setting from the following two options.

- Turn the output on at the falling edge of the LOW signal (CF15: LO)
 Output is turned on when a low (0 V to 0.5 V) signal is applied to pin 17 of the J1 connector or the pin is shorted.
- Turn the output on at the rising edge of the HIGH signal (CF15: HI) Output is turned on when a high (4.5 V to 5 V) signal is applied to pin 17 of the J1 connector or the pin is opened.

You can use the CONFIG settings to enable the output-on/ off delay function and soft start and soft stop functions (CF14: E_nh).

Output on/off control is performed by detecting rising edges or falling edges. Because it is not a level detection, if you want to turn on the output at startup, you need to apply a signal so that an edge is detected.

External contact, the OUTPUT key on the panel, and output on/off control using the OUTP command are enabled simultaneously. (For details on commands, see the Communication Interface Manual.)

Because output off is prioritized, if the output is turned off with an external contact, the OUT-PUT key and OUTP command are disabled.

Controlling the output on and off states (in this example, a HIGH signal is used to turn the output on)

External contact connection

Use pins 15 and 17 of the J1 connector.

The open-circuit voltage across pins 15 and 17 is approximately 5 V. The short-circuit current across pins 5 and 19 is approximately 0.5 mA.

Use external contacts that have a contact rating greater than or equal to 0.5 mA at 5 Vdc.

If two or more units are floating, and you are using a single external contact to turn output on and off, use a relay or similar device for the external contact signal to isolate the signal transmitted to each unit.

For long-distance wiring

When you are wiring over a great distance, use a small relay and extend the coil side of the relay.

Controlling Output Shutdown

This section explains how to use an external contact to turn output off.

/!\WARNING

Risk of electric shock.

- Ensure that the insulation of external contact (S) and the connected cable is greater than or equal to the isolation voltage of the PWR-01. For details on the isolation voltage of each model, see Chap.7 "Specifications" (*p.123*).
- When using shielded cables for the connection, protect the uncovered sections of the shielded cable by using insulation tubes whose withstand voltage is greater than the PWR-01's isolation voltage.

To reduce the influence of noise on the output, connect a 2-core shielded wire or a twistedpair wire across the external contact, and keep the wire as short as possible. If the wiring is long, it becomes easy for noise to influence the operation of the PWR-01. Even if you use cables that are designed to suppress noise, the PWR-01 may not operate properly.

If you use a shielded cable, connect the shield to the negative output terminal.

Output is turned off when a low (0 V to 0.5 V) signal is applied to pin 16 of the J1 connector or the pin is shorted.

To recover, set pin 16 of the J1 connector to HIGH (4.5 V to 5 V) or open the pin, and then turn the POWER switch off and then on.

Output shutdown connection

Use pins 15 and 16 of the J1 connector. The open-circuit voltage across pins 15 and 16 is approximately 5 V. The shortcircuit current across pins 5 and 19 is approximately 0.5 mA.

Use external contacts that have a contact rating greater than or equal to 0.5 mA at 5 Vdc.

2-core shielded wire or twisted pair wires PWR-01 Switch

If two or more units are floating, and you

are using a single external contact to shut down the output for all the units, use a relay or similar device for the external contact signal to isolate the signal transmitted to each unit.

When pin 14 of the J1 connector is enabled, if a slave unit stops due to an error during master-slave parallel operation, the entire system will be shut down (p.57).

You can select using CONFIG settings whether to trip the breaker when a shutdown occurs (CF25: \Box_n / \Box_FF) (2000W model only).

By factory default, breaker tripping for output shutdown is enabled (CF25: ___) (p.69).

For long-distance wiring

When you are wiring over a great distance, use a small relay and extend the coil side of the relay.

Controlling the Clearing of Alarms

	This section explains how to use an external contact to clear alarms.		
ARNING	Risk of electric shock.		
	 Ensure that the insulation of external contact (S) and the connected cable is greater than or equal to the isolation voltage of the PWR-01. For details on the isolation volt- age of each model, see Chap.7 "Specifications" (p.123). 		
	• When using shielded cables for the connection, protect the uncovered sections of the shielded cable by using insulation tubes whose withstand voltage is greater than the PWR-01's isolation voltage.		

To reduce the influence of noise on the output, connect a 2-core shielded wire or a twistedpair wire across the external contact, and keep the wire as short as possible. If the wiring is long, it becomes easy for noise to influence the operation of the PWR-01. Even if you use cables that are designed to suppress noise, the PWR-01 may not operate properly.

If you use a shielded cable, connect the shield to the negative output terminal.

Alarms are cleared when a low (0 V to 0.5 V) signal is applied to pin 6 of the J1 connector or the pin is shorted.

Alarm clear connection

<u>/</u>\W

104

Use pins 5 and 6 of the J1 connector. The open-circuit voltage across pins 5 and 6 is approximately 5 V. The shortcircuit current across pins 5 and 19 is approximately 0.5 mA.

Use external contacts that have a contact rating greater than or equal to 0.5 mA at 5 Vdc.

If two or more units are floating, and you are using a single external contact to clear alarms, use a relay or similar device for the external contact signal to isolate the signal transmitted to each unit.

For long-distance wiring

When you are wiring over a great distance, use a small relay and extend the coil side of the relay.

External Monitoring

External monitoring of the output voltage and output current

The J1 connector has monitor outputs for the output voltage and the output current. You can set the monitor output voltage range using CONFIG settings (CF13).

Pin no.	Signal name	Description
J1-5 J1-10 J1-15	A GND	Monitor output common
J1-2	VMON	Monitor output of output voltage 0 V to approx. 5 V (CF13: L_), 0 V to approx. 10 V (CF13: h_) between 0 V to rated output voltage
J1-12	IMON	Monitor output of output current 0 V to approx. 5 V (CF13: L_a), 0 V to approx. 10 V (CF13: h_i) between 0 A to rated output current

CAUTION Shorting VMON and IMON to A GND may damage the PWR-01.

Monitor output rating

Output impedance: $1 \text{ k}\Omega$ or less. Maximum output current: Approx. 10 mA The monitor output signals are used to monitor the DC voltage (mean value). They cannot be used to accurately monitor the AC components (such as ripple and transient response waveform) of the actual output voltage or current.

External monitoring of the operating status

The J2 connector has status outputs that can be used to externally monitor the operation status of the PWR-01. The following five items make up the status outputs.

The outputs are open collector outputs of photocouplers; they are isolated from the internal circuits of the PWR-01.

The status common is floating (that is, it has an isolation voltage of less than or equal to 800 V).

The maximum ratings of the signal terminals are as follows:

Maximum voltage: 30 V. Maximum current (sink): 8 mA.

Pin no.	Signal name	Description	Circuit
J2-1	STATUS COM	Status output common. Photocoupler emitter output.	
J2-2	OUT ON STATUS	The level changes when the output is on. LOW level (CF18: բեն), HIGH (CF18: Pեն) Photocoupler open collector output.	- J2
J2-3	PWR ON STATUS	This is set to low level when the POWER switch is turned on (PWR ON STATUS). Photocoupler open collector output.	
J2-4	ALM STATUS ¹	The level changes when a protection function (OVP, OCP, FOCP, OHP, SENSE, AC-FAIL) is activated or when an output shutdown signal is received. LOW level (CF19: ¬EL), HIGH (CF19: P_J) Photocoupler open collector output.	
J2-5	CV STATUS ¹	The level changes in constant-voltage mode. LOW level (CF17: բեն), HIGH (CF17: Pեն) Photocoupler open collector output.	6
J2-6	CC STATUS ¹	The level changes in constant-current mode. LOW level (CF16: ԴЕԸ), HIGH (CF16: P占Հ) Photocoupler open collector output.	_

1 If the status output is set to HIGH level (POS), the status output will be at HIGH level for 5 seconds after the POWER switch is turned on.

Parallel/ Series Operation

This chapter describes the functions of series operation and the master-slave parallel operations as well as the connection, setup, and operation procedures.

Master-Slave Parallel Operation

Master-slave parallel operation is a function used to control a whole parallel-connected system from a master unit. One unit is the master unit, and other PWR-01s connected in parallel are slave units. The master and slave units must all be the same model.

You can use master-slave parallel operation to increase the output current (maximum output current: the rated output current of one unit × the number of units connected in parallel).

	400W model	800W model	1200W model	2000W model
Maximum number of	Up to three units	Up to three units	Up to two units	Up to two units
units connected in	including the	including the	including the	including the
parallel	master unit	master unit	master unit	master unit

The difference in the output voltage and output current between the master unit and the slave units is within approximately 5 % of the rating.

CAUTION When using a PWR-01 independently or when there are PWR-01s not using parallel operation, disconnect the parallel operation connections. Otherwise, the PWR-01 may not operate properly.

Features

The functions of the PWR-01 during master-slave parallel operation are as follows:

Voltage display and current display

The voltmeter on the master unit displays the voltage. The master unit displays the last voltage that was set, and the voltmeter on the slave units displays "LRU."

The master unit's ammeter displays the total of the currents of all the units connected in parallel. For slave units, the current display of each slave unit can be set (CF35: $_{\Box}FF/_{\Box}n$).

The maximum current display is 999.9.

You can switch the display so that it shows power (p.38). The master unit's ammeter displays the total of the powers of all the units connected in parallel. For slave units, the power display of each slave unit can be set (CF35: $_{\Box}FF/_{\Box}n$).

Example of the panel display during parallel operation (Output current at 20 A, slave unit display set to on)

If the number of units in parallel operation (CF44) set on the master unit does not match the actual number of units connected in parallel, the correct current will not be displayed.

External control

This is only available on the master unit (p.89).
External monitoring

^	
	During parallel operation, do not connect the monitor common cable of the master unit to the monitor common cables of the slave units. If the cables connected to the load are disconnected, the common cables will be damaged.
	• External monitoring of the output voltage (VMON) (p_{105})
	This can be monitored from the master unit.
	• External monitoring of the output current (IMON) (<i>p.105</i>)
	You can monitor the output current of the master unit and each slave unit. Use the master unit to monitor the total output current.
	Status monitors (p.106)
	You can monitor the status of the following items from the master unit and from the slav unit: constant-voltage mode (CV STATUS), constant-current mode (CC STATUS), output on, POWER switch on, and alarms. However, slave units always output the status of cor stant-current mode.
F	emote sensing
	This is only available on the master unit (p.34).
A	larms
	If an alarm is detected, the units behave as follows:
	If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units.
	If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units.
	 If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units. Alarm detected on the master unit The output of each slave unit is turned off, and then the output of the entire system is turned off.
	 If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units. Alarm detected on the master unit The output of each slave unit is turned off, and then the output of the entire system is turned off. Alarm detected on a slave unit
	 If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units. Alarm detected on the master unit The output of each slave unit is turned off, and then the output of the entire system turned off. Alarm detected on a slave unit The master unit detects the alarm on the slave unit and then turns off the output of the entire system.
▲ CAUTION	 If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units. Alarm detected on the master unit The output of each slave unit is turned off, and then the output of the entire system is turned off. Alarm detected on a slave unit The master unit detects the alarm on the slave unit and then turns off the output of the entire system. Clearing alarms
▲ CAUTION	 If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units. Alarm detected on the master unit The output of each slave unit is turned off, and then the output of the entire system is turned off. Alarm detected on a slave unit The master unit detects the alarm on the slave unit and then turns off the output of the entire system. Clearing alarms Press ALM CLR (SHIFT+SET) or apply a LOW level signal (0 V to 0.5 V) to or short pin 6 of the J1 connector to clear the alarm state (<i>p.51</i>), and eliminate the cause of the alarm.
▲ CAUTION	 If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units. Alarm detected on the master unit The output of each slave unit is turned off, and then the output of the entire system is turned off. Alarm detected on a slave unit The master unit detects the alarm on the slave unit and then turns off the output of the entire system. Clearing alarms Press ALM CLR (SHIFT+SET) or apply a LOW level signal (0 V to 0.5 V) to or short pin 6 of the J1 connector to clear the alarm state (<i>p.51</i>), and eliminate the cause of the alarm. If a shutdown (SD) or parallel alarm (PRL ARM) is activated, turn off the slave units first an then the master unit. Eliminate the cause of the alarm, and then turn on the master unit first and then the slave units (<i>p.113</i>).
▲ CAUTION	 If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units. Alarm detected on the master unit The output of each slave unit is turned off, and then the output of the entire system is turned off. Alarm detected on a slave unit The master unit detects the alarm on the slave unit and then turns off the output of the entire system. Clearing alarms Press ALM CLR (SHIFT+SET) or apply a LOW level signal (0 V to 0.5 V) to or short pin 6 of the J1 connector to clear the alarm state (<i>p.51</i>), and eliminate the cause of the alarm. If a shutdown (SD) or parallel alarm (PRL ARM) is activated, turn off the slave units first an then the slave units (<i>p.113</i>).
▲ CAUTION	 If an alarm is detected, the units behave as follows: If an error occurs in a slave unit, the master-slave parallel operation protection (PRL ALM) turns off the output of the entire system. During master-slave parallel operation, connect pin 14 of the J1 connectors of the master unit and slave units. Alarm detected on the master unit The output of each slave unit is turned off, and then the output of the entire system is turned off. Alarm detected on a slave unit The master unit detects the alarm on the slave unit and then turns off the output of the entire system. Clearing alarms Press ALM CLR (SHIFT+SET) or apply a LOW level signal (0 V to 0.5 V) to or short pin 6 of the J1 connector to clear the alarm state (<i>p.51</i>), and eliminate the cause of the alarm. If a shutdown (SD) or parallel alarm (PRL ARM) is activated, turn off the slave units first an then the slave units (<i>p.113</i>).

Connection

Connecting the signal cables

Use the J1 connector to make the connections for parallel operation. The necessary cables are not included. For details, see "About the J1/ J2 Connectors" (p.91).

Example of connecting two slave units

Decide which PWR-01 you will use as the master unit.

2 Connect the J1 connector of the master unit to the J1 connector of the first slave unit.

If there is a second slave unit, connect the J1 connector of the first slave unit to that of the second slave unit.

The cable is available as an option (p. 148).

Connecting the Load

Risk of electric shock. Turn the POWER switch off before you touch the output terminals. Attach the OUTPUT terminal cover after you finish wiring the load.
• When you ground the output terminals, be sure to connect the same polarity output terminals (positive or negative) of the master unit and the slave units to the chassis terminals. If you ground different polarity output terminals of the master unit and the slave units, the output will be grounded through the power cable's GND wire. Not only will this make the output incorrect, it will also damage the chassis connection short bar.
• To prevent oscillation, connect an electrolytic capacitor with a capacitance of a few hundred μ F to a few ten thousand μ F across the load as necessary. If the wires are long, the wiring inductance and capacitance can cause phase shifting at a level that can not be ignored. This may lead to oscillation. The withstand voltage of the electrolytic capacitor needs to be at least 120 % of the rated output voltage of the PWR-01.
• Twist the positive and negative cables together, and make the connection to the load as short as possible. Oscillation may occur as a result of wiring inductance.

- Turn off all the PWR-01s that you want to connect in parallel.
- Remove the OUTPUT terminal covers.
- 3 Connect the output terminals (positive or negative) of the master unit and the slave units to the chassis terminals.

Ground the same polarity output terminals of the master unit and slave units. If you are using the units under floating conditions, do not connect the terminals.

Connect the load cables (*p.21*) to the output terminals of the master unit and the slave units.

5 Connect the load cables of the master unit and slave units to the load through a relay terminal block.

Use load cables that have sufficient current capacity. Use load cables of equivalent length and cross-sectional area to connect each PWR-01 to the relay terminal block, and wire the cables so that they are as short as possible (50 cm or less). Also, make the connection from the relay terminal block to the load block as short as possible. Wire the J1 connector signal cables and the load cables as far apart as possible.

Attach the OUTPUT terminal cover.

Setting

Setting the master unit, the slave units, and the number of units in parallel operation (including the master unit)

Turn the output off, and then configure the master unit (CF44: 2 or 3) and the slave units (CF44: LRU). On the master unit, set the number of units in parallel operation (CF44: 2 or 3).

By factory default, the PWR-01 is set to independent operation (CF44: 1).

Turn the POWER switch off and on to enable the setting.

Be sure to set the number of units in parallel operation (CF44) to the actual number of units. If this parameter is incorrect, settings such as those for the current and the overcurrent protection (OCP) cannot be set correctly, and the measured current will not be displayed correctly.

Setting the voltage and current

Use the master unit to set the voltage and current (p. 108).

The current that is output is the sum of the currents of the master unit and the slave units.

When you set the number of units in parallel operation (CF44) in CONFIG settings, the maximum output current (105 % of the rated output current of a single unit × the number of units in parallel) is set. The value is displayed when the PWR-01 is showing the setting display (when the SET key is lit). The last voltage that was set on the master unit is used. When you press OUTPUT, the set voltage and current are output. You can set the voltage and current to any values.

Setting the overvoltage protection (OVP) and overcurrent protection (OCP) of the master unit

In parallel operation, set the overvoltage protection (OVP) and overcurrent protection (OCP) of the master unit (p.52).

When you set the number of units in parallel operation (CF44) in CONFIG settings, the maximum overcurrent protection value (112 % of the rated output current of a single unit × the number of units in parallel) is set. The value is displayed when the PWR-01 is showing the OVP/OCP setting display (when the OVP•OCP key is lit). The last overvoltage protection value that was set on the master unit is used.

Breaker trip setting for protection function (OVP/ OCP/ FOCP/ SD/ PRL ALM) activation (2000W model only)

In parallel operation, you can select using CONFIG settings whether to trip the breaker (turn off the POWER switch) when a protection function (OVP/ OCP/ FOCP/ SD/ PRL ALM) is activated (CF25: OFF/ON) (p.69). The factory default setting is ON.

The master unit setting is not applied to slave units. Set it in the master unit and slave units.

....

Starting master-slave parallel operation

Turning on the POWER switch

- **1** Turn on the master unit's POWER switch.
- 2 Turn off the POWER switch of each slave unit.
- **3** Operate the master unit normally.

You cannot perform panel operations on the slave units. Turn output on and off from the master unit.

Turning the POWER switch off

After off be and o will s	After you turn the POWER switch off, wait at least 10 seconds after the panel display turns off before you turn the POWER switch back on. Repeatedly turning the POWER switch on and off at short intervals can cause damage to the inrush current limiter. Furthermore, this will shorten the service life of the POWER switch, internal input fuse, and other components.					
1 2	Turn off the POWER switch of each slave unit. Turn off the master unit's POWER switch.					

Series Operation

WARNING Series operation is not possible on the H type (PWR401H, PWR801H, PWR1201H, PWR2001H). If you do, the output will exceed the isolation voltage resulting in a dangerous condition.

Up to two PWR-01s whose output is less than 650 V can be connected in series. You cannot perform master-slave series operation. The total of the output voltages of the two units is applied to the load.

The voltage setting accuracy is the same as the accuracy of an individual unit.

Features

The functions of the PWR-01 during series operation are as follows:

Voltage display and current display

The voltage and current are displayed on unit 1 and unit 2. To calculate the total output voltage, add the voltages of unit 1 and unit 2.

You can switch the display so that it shows power. The power is displayed (p.38) on unit 1 and unit 2.

Unit 2

Example of the panel display during series operation (20 A output current)

External control

This is available (p.89).

External monitoring

WARNING During monitoring, be careful of shorts and electric shocks. When monitoring the output voltage or output current during series operation, the electric potential of the commons of unit 1's monitor signal and unit 2's monitor signal are different.

- External monitoring of the output voltage (VMON) (*p.105*)
 You can monitor the output voltage of each unit.
 To calculate the total output voltage, add the monitored values of unit 1 and unit 2.
- External monitoring of the output current (IMON) (*p. 105*)
 You can monitor the output current of each unit.
- Status monitors (p.106)

You can monitor the status of the following items from each unit: constant-voltage mode (CV STATUS), constant-current mode (CC STATUS), output on, POWER switch on, and alarms.

Remote sensing

CAUTION
 If the sensing cables are not connected properly, the load may be exposed to excessive voltage, and the PWR-01s may be damaged.
 To prevent oscillation, connect an electrolytic capacitor with a capacitance of a few hundred µF to a few ten thousand µF across the load as necessary. If the wires are long,

the wiring inductance and capacitance can cause phase shifting at a level that can not be ignored. This may lead to oscillation.

The withstand voltage of the electrolytic capacitor needs to be at least 120 % of the total rated output voltage of the PWR-01s connected in series.

To perform remote sensing, connect the PWR-01s in series, and then connect the sensing cables to them as shown in the following figure (p.34).

Alarms

All alarms will be detected during series operation.

You can select whether to automatically turn on or off the output when the cause of the alarm is removed using a CONFIG setting (CF20: $\Pi_{u} \models_{\Box} / \Box_{H} FE$) (AC-FAIL only).

Clearing alarms

Press ALM CLR (SHIFT+SET) or apply a low level signal (0 V to 0.5 V) to or short pin 6 of the J1 connector to clear the alarm state (p.51), and eliminate the cause of the alarm.

If a shutdown (SD) or parallel alarm (PRL ARM) is activated, turn off the POWER switch on unit 1 and unit 2. Eliminate the cause of the alarm, and then turn on the two units (p.117).

Connection

Connecting the Load

WARNING Risk of electric shock. Turn the POWER switch off before you touch the output terminals. Attach the OUTPUT terminal cover after you finish wiring the load.

The withstand voltage of the electrolytic capacitor needs to be at least 120 % of the total rated output voltage of the PWR-01s connected in series.

Connect the load as shown below.

- Turn off all the PWR-01s that you want to connect in series.
- Remove the OUTPUT terminal covers.
- 3 Connect the output terminal (positive or negative) of unit 1 or unit 2 to the chassis terminal.
- Use load cables to connect unit 1 and unit 2 to the load or relay terminal block.

Use load cables that have sufficient current capacity (p.21). Wire the load cables so that they are as short as possible. If the voltage drop in the load cable is large, the difference in electric potential between power supply units and the load regulation become large.

- 5 Connect the cables to the output terminals of unit 1 and unit 2.
 - Attach the OUTPUT terminal cover.

6

Setting

Setting the voltage and current

Set the voltage and current on each unit. The voltage that is output is the total of the voltages of the two units. Set the current to the same value on the two units.

Setting the overvoltage protection (OVP) and overcurrent protection (OCP)

In series operation, you have to set the overvoltage protection (OVP) and overcurrent protection (OCP) on both units (p.52). Specify the same values on the two units.

Starting series operation

Turning the POWER switch on and off

Turn the POWER switch on unit 1 and unit 2 on or off.

CAUTION After you turn the POWER switch off, wait at least 10 seconds after the fan stops before you turn the POWER switch back on. Repeatedly turning the POWER switch on and off at short intervals can cause damage to the inrush current limiter. Furthermore, this will shorten the service life of the POWER switch, internal input fuse, and other components.

Turning the output on/off

Press OUTPUT on unit 1 and unit 2 to turn the output on or off.

.....

This page is intentionally blank.

Maintenance

This chapter explains how to perform calibration.

Calibration

The product is calibrated before shipment. To maintain long-term reliable performance, we recommend periodic calibration.

To have your product calibrated, contact your Kikusui distributor or agent.

If you are going to calibrate the product, follow the procedure below. All the calibration parameters of this product are listed.

Calibration overview

The following eight parameters can be calibrated.

Be sure to calibrate both the offset and full scale values.

- Output voltage offset (10 %)
- Voltmeter offset (0 %)
- Output current offset (10 %)
- Ammeter offset (0 %)
- Output voltage full scale (100 %)

...........

- Voltmeter full scale (100 %)
- Output current full scale (100 %)
- Ammeter full scale (100 %)

Required devices

- DC voltmeter (DVM) with a measurement accuracy of 0.02 % or more
- · Shunt resistor

Model	Recommended shunt resistor	
Woder	Rating	Tolerance
PWR401L	50 A/ 100 mV (2.00 mΩ)	
PWR401ML	20 A/ 100 mV (5.00 mΩ)	
PWR401MH	10 A/ 100 mV (10.00 mΩ)	
PWR401H	2 A/ 100 mV (50.00 mΩ)	
PWR801L	100 A/ 100 mV (1.00 mΩ)	
PWR801ML	50 A/ 100 mV (2.00 mΩ)	
PWR801MH	20 A/ 100 mV (5.00 mΩ)	
PWR801H	5 A/ 100 mV (20.00 mΩ)	<+0.1 %
PWR1201L	200 A/ 50 mV (0.25 mΩ)	×±0.1 %
PWR1201ML	100 A/ 100 mV (1.00 mΩ)	
PWR1201MH	20 A/ 100 mV (5.00 mΩ)	
PWR1201H	10 A/ 100 mV (10.00 mΩ)	
PWR2001L	200 A/ 50 mV (0.25 mΩ)	
PWR2001ML	100 A/ 100 mV (1.00 mΩ)	
PWR2001MH	50 A/ 100 mV (2.00 mΩ)	
PWR2001H	10 A/ 100 mV (10.00 mΩ)	

Environment

Perform calibration in the following environment.

- Temperature: 23 °C ± 5 °C
- Humidity: 80 %rh or less

.........

To minimize the calibration error due to initial drift, warm up the PWR-01 for at least 30 minutes before calibration. In addition, warm up the DVM and shunt resistor for as long as is necessary.

Calibration procedure

Use the KIKUSUI PWR-01 Calibration software application in the CD-ROM to calibrate the PWR-01. System requirements for PWR-01 Calibration are as follows:

- Windows 10 (x86/ x64)
- Windows 8.1 (x86/ x64)
- Windows 8 (x86/ x64)
- Windows 7 (x86/ x64)
- .NET Framework 2.0 or later

VISA library

One of the following VISA libraries is required. Do not install multiple VISA libraries on the same PC. Doing so may cause errors.

- NI-VISA by National Instruments Corporation (Ver. 5.0.3 or later)
- Keysight VISA by Keysight Technologies (Keysight IO Libraries Suite 16.0 or later)
- KI-VISA Ver. 5.0.4 or later

For details, see the PWR-01 Calibration - Manual that is installed together with the application software for calibrating the PWR-01.

Be sure to execute the calibration procedure completely. If you change to a different type of calibration or turn off the POWER switch in the middle of the procedure, that calibration will be invalid.

Connection

Voltage calibration

Current calibration

Cleaning

WARNING

Risk of electric shock. Before you perform maintenance, be sure to turn the POWER switch off and remove the power plug from the outlet or turn off the switchboard.

Cleaning the Dust Filter

Dust filters are installed on the inside of the louver on the front panel. Periodically clean the filter to prevent clogging.

- ▲ CAUTION A clogged filter hinders the cooling of the inside of the PWR-01, can cause malfunctions, and can shorten the PWR-01's service life.
 - When the PWR-01 is in operation, air is sucked through the dust filter to cool the inside of the device. If moisture is present in the dust filter, the humidity inside the PWR-01 increases and may cause malfunctions.
 - While pulling the first slat from the bottom of the louver towards you, slide the entire louver down, and remove the louver from the panel.

7 Remove the dust filter from the inside of each louver and clean it.

Use a vacuum cleaner to dispose of the dust and foreign particles that are attached to the dust filter. If the filter is extremely dirty, clean it using water-diluted neutral detergent, and dry it completely.

Attach the dust filter to each louver.

Attach the dust filter so that it fits in between the left and right tabs.

Attach the louver to the panel.

Insert the top louver tabs into the PWR-01, and while holding the fourth slab from the bottom, slide the entire louver upward to secure it in place.

5 The louver below the controls does not come off. Clean the dust filter from the front of the louver.

Use a vacuum cleaner to dispose of the dust and foreign particles that are attached to the dust filter.

Specifications

This chapter contains the specifications and gives the dimensions of the PWR-01.

Unless specified otherwise, the specifications are for the following settings and conditions.

- · Loads are purely resistive loads.
- The warm-up time is 30 minutes.
- The specifications of this product apply to the rear panel output terminals.
- After warm-up, the product must be calibrated correctly in a 23 °C ± 5 °C environment according to the appropriate calibration procedure.

The used terminology is as follows:

- TYP: These are typical values that are representative of situations where the product operates in an environment with an ambient temperature of 23 °C (73.4 °F). These values do not guarantee the performance of this product.
- · rating: Indicates the rated.
- · reading: Indicates the readout value.
- f.s.: Full scale.
- · Rated load and no load:

In constant-voltage mode (when the output current is set to a value greater than or equal to the maximum output current with rated output voltage)

- Rated load: Refers to a resistive load that, when the rated output voltage is applied, makes the flowing current 95 % to 100 % of the maximum output current with rated output voltage.
- No load: Refers to a load through which no output current flows. In other words, refers to an open load.

In constant-current mode (when the output voltage is set to a value greater than or equal to the maximum output voltage with rated output current)

Rated load: Refers to a resistive load that, when the rated output current flows, makes the voltage drop to 95 % to 100 % of the maximum output voltage with rated output current. Including the voltage drop in the load cables, the PWR-01 output voltage

No load: Refers to a resistive load that, when the rated output current flows, makes

- the voltage drop to 10 % of the maximum output voltage with rated output current or 1 V whichever is higher.
- Rise time: The time is takes for the output voltage or output current to rise from 10 % to 90 % of the rating when the output is tuned on.
- Fall time: The time is takes for the output voltage or output current to fall from 90 % to 10 % of the rating when the output is tuned off.
- The PWR-01 operates over a wide range of output voltage and output current within rated output power. However, the current that can be output with rated output voltage and the voltage that can be output with rated output current are limited by the rated output power.
- The current that can be output with rated output voltage and the voltage that can be output with rated output current are as follows.

Maximum output current with rated output voltage = Rated output power/ rated output voltage.

Maximum output voltage with rated output current = Rated output power/ rated output current.

400W model

This section provides the specifications specific to the 400W model. For specifications common to all models (Protection functions, Signal output and input, Control functions, Other functions, Operation display, Interface, and General), see "Common Specifications" (*p.*137).

AC input

		PWR401L	PWR401ML	PWR401MH	PWR401H		
Nominal input rating	l	100 Vac to 240 Vac, 50 Hz to 60 Hz, single phase					
Input voltage range		85 Vac to 265 Vac					
Input frequency rang	ge	47 Hz to 63 Hz					
Current (TYP) ¹	100 Vac	5.6 A					
	200 Vac	2.8 A					
Inrush current		25 A or less					
Power (MAX) ²		560 VA					
Power factor (TYP)	1	0.99 (input voltage: 100 V), 0.97 (input voltage: 200 V)					
Efficiency (TYP) ¹		75 %					
Output hold time ²		20 ms or more					

1. At the rated output power for the rated output current.

2. 100 Vac, at the rated output power.

				PWR401L	PWR401ML	PWR401MH	PWR401H
Rating	Outpu	ut voltage ¹		40 V	80 V	240 V	650 V
	Output current ¹		40 A	20 A	5 A	1.85 A	
	Outpu	ut power		400 W			
Voltage	Maxir	num settable v	/oltage ²	42 V	84 V	252 V	682.5 V
	Settir	ig accuracy		± (0.05 % of se	etting +0.05 % of	rating)	1
	Reso	lution		200 mV	400 mV	1000 mV	2500 mV
		Using FINE,	OUT OFF	10 mV	10 mV	100 mV	100 mV
		Using FINE,	OUT ON	1 mV	1 mV	10 mV	10 mV
		When using a interface	a communication	0.1 mV	0.1 mV	0.1 mV	0.1 mV
	Line ı	regulation ³		±6 mV	±10 mV	±26 mV	±67 mV
	Load	regulation ⁴		±6 mV	±10 mV	±26 mV	±67 mV
	Trans	ient response	5	1 ms or less	2 ms or less	2 ms or less	3 ms or less
	Ripple	e noise ⁶	р-р ⁷	50 mV	50 mV	100 mV	300 mV
			rms ⁸	5 mV	5 mV	20 mV	50 mV
	Rise	time	At full load	50 ms or less		100 ms or less	
			No load	50 ms or less		100 ms or less	
	Fall ti	me ⁹	At full load	50 ms or less		150 ms	250 ms
			No load	500 ms or less		1200 ms	2000 ms
	Maxir satior	num remote se n voltage (sing	ensing compen- le line)	1.5 V	4 V	5 V	5 V
	Temp	erature coeffic	cient ¹⁰	100 ppm/°C			
Current	Maxir	num settable o	current ²	42 A	21 A	5.25 A	1.9425 A
	Settir	ng accuracy ¹¹		± (0.5 % of setting +0.1 % of rating)			
	Reso	lution		200 mA	100 mA	20 mA	10 mA
		Using FINE,	OUT OFF	10 mA	10 mA	1 mA	1 mA
		Using FINE,	OUT ON	1 mA	1 mA	0.1 mA	0.1 mA
		When using a interface	a communication	0.1 mA	0.1 mA	0.1 mA	0.1 mA
	Line regulation Load regulation Ripple noise ¹² rms ⁸		±6 mA	±4 mA	±2.5 mA	±2.2 mA	
			±13 mA	±9 mA	±6.0 mA	±5.4 mA	
			rms ⁸	80 mA	40 mA	12 mA	6 mA
	Rise	time (TYP)	At full load	50 ms		100 ms	
	Fall ti	me (TYP)	At full load	50 ms		100 ms	
	Temp	erature coeffic	cient ¹⁰	100 ppm/°C			
Maximum	intern	al resistance t	hat can be set	1.000 Ω	4.000 Ω	36.00 Ω	263.5 Ω

Output

1. The maximum output voltage and maximum output current are limited by the maximum output power.

2. Can be limited to approximately 95 % of the OVP trip point or OCP trip point.

3. 85 Vac to 135 Vac or 170 Vac to 265 Vac, fixed load

4. The amount of change that occurs when the load is changed from no load to full load (rated output power/ rated output voltage) with rated output voltage. The value is measured at the sensing point.

5. The amount of time required for the output voltage to return to a value within "rated output voltage ± (0.1 % + 10 mV)." The load current fluctuation is 50 % to 100 % of the maximum current with the set output voltage.

6. Measured using an RC-9131C probe that conforms to the JEITA specifications. At the rated output current.

7. When the measurement frequency bandwidth is 10 Hz to 20 MHz.

8. When the measurement frequency bandwidth is 10 Hz to 1 MHz.

9. When the bleeder circuit is set to bleeder normal.

10. When the ambient temperature is within 0°C and 50 °C $\,$

11. Applies to the range of 1 % to 100 % of the rated current. TYP (0.1 % of rating) for 0 % to 1 %.

12. When the output voltage is 10 % to 100 % of the rating. At the rated output current.

Display function

		PWR401L	PWR401ML	PWR401MH	PWR401H	
Voltage	Maximum display	99.99		999.9		
display	Display accuracy	± (0.2 % of readi	ng + 5 digits)			
Current	Maximum display	99.99		9.999		
display	Display accuracy	± (0.5 % of reading + 8 digits)				
Power display		The PWR DSPL LED lights in red.				
	Maximum display	9999				
	Display accuracy	Displays the result of multiplying the current and voltage. The display is toggled with the voltage or current display.				

Outline drawing

Unit mm (inches)

800W model

This section provides the specifications specific to the 800W model. For specifications common to all models (Protection functions, Signal output and input, Control functions, Other functions, Operation display, Interface, and General), see "Common Specifications" (*p.137*).

AC input

		PWR801L	PWR801ML	PWR801MH	PWR801H		
Nominal input rating	3	100 Vac to 240 \	100 Vac to 240 Vac, 50 Hz to 60 Hz, single phase				
Input voltage range		85 Vac to 265 Va	85 Vac to 265 Vac				
Input frequency ran	ge	47 Hz to 63 Hz					
Current (TYP) ¹	100 Vac	11.2 A					
	200 Vac	5.6 A					
Inrush current		50 A or less					
Power (MAX) ²		1120 VA					
Power factor (TYP)	1	0.99 (input voltage: 100 V), 0.97 (input voltage: 200 V)					
Efficiency (TYP) ¹		75 %					
Output hold time ²		20 ms or more					

1. At the rated output power for the rated output current.

2. 100 Vac, at the rated output power.

				PWR801L	PWR801ML	PWR801MH	PWR801H
Rating	Outpu	ut voltage ¹		40 V	80 V	240 V	650 V
	Outpu	ut current ¹		80 A	40 A	10 A	3.70 A
	Outpu	ut power		800 W			
Voltage	Maxir	num settable v	/oltage ²	42 V	84 V	252 V	682.5 V
	Settir	ig accuracy		± (0.05 % of se	etting +0.05 % of	rating)	
	Reso	lution		200 mV	400 mV	1000 mV	2500 mV
		Using FINE,	OUT OFF	10 mV	10 mV	100 mV	100 mV
		Using FINE,	OUT ON	1 mV	1 mV	10 mV	10 mV
		When using a interface	a communication	0.1 mV	0.1 mV	0.1 mV	0.1 mV
	Line r	regulation ³		±6 mV	±10 mV	±26 mV	±67 mV
	Load	regulation ⁴		±6 mV	±10 mV	±26 mV	±67 mV
	Trans	ient response	5	1 ms or less	2 ms or less	2 ms or less	3 ms or less
	Ripple	e noise ⁶	р-р ⁷	50 mV	50 mV	100 mV	300 mV
			rms ⁸	5 mV	5 mV	20 mV	50 mV
	Rise	time	At full load	50 ms or less		100 ms or less	
			No load	50 ms or less		100 ms or less	
	Fall ti	me ⁹	At full load	50 ms or less		150 ms	250 ms
			No load	500 ms or less		1200 ms	2000 ms
	Maxir satior	num remote se n voltage (sing	ensing compen- le line)	1.5 V	4 V	5 V	5 V
	Temp	erature coeffic	cient ¹⁰	100 ppm/°C			
Current	Maxir	num settable o	current ²	84 A	42 A	10.5 A	3.885 A
	Settir	ng accuracy ¹¹		± (0.5 % of setting +0.1 % of rating)			
	Reso	lution		400 mA	200 mA	40 mA	20 mA
		Using FINE,	OUT OFF	10 mA	10 mA	10 mA	1 mA
		Using FINE,	OUT ON	1 mA	1 mA	1 mA	0.1 mA
		When using a interface	a communication	0.1 mA	0.1 mA	0.1 mA	0.1 mA
	Line regulation Load regulation Ripple noise ¹² rms ⁸ Rise time (TYP) At full load		±10 mA	±6 mA	±3 mA	±2.4 mA	
			±21 mA	±13 mA	±7.0 mA	±5.7 mA	
			rms ⁸	160 mA	80 mA	24 mA	12 mA
			At full load	50 ms		100 ms	•
	Fall ti	me (TYP)	At full load	50 ms		100 ms	
	Temp	erature coeffic	cient ¹⁰	100 ppm/°C		•	
Maximum internal resistance that can be set		0.500 Ω	2.000 Ω	18.00 Ω	131.8 Ω		

Output

1. The maximum output voltage and maximum output current are limited by the maximum output power.

2. Can be limited to approximately 95 % of the OVP trip point or OCP trip point.

3. 85 Vac to 135 Vac or 170 Vac to 265 Vac, fixed load

4. The amount of change that occurs when the load is changed from no load to full load (rated output power/ rated output voltage) with rated output voltage. The value is measured at the sensing point.

5. The amount of time required for the output voltage to return to a value within "rated output voltage \pm (0.1 % + 10 mV)." The load current fluctuation is 50 % to 100 % of the maximum current with the set output voltage.

6. Measured using an RC-9131C probe that conforms to the JEITA specifications. At the rated output current.

When the measurement frequency bandwidth is 10 Hz to 20 MHz.
 When the measurement frequency bandwidth is 10 Hz to 1 MHz.

When the bleeder circuit is set to bleeder normal.

When the ambient temperature is within 0°C and 50 °C

11. Applies to the range of 1 % to 100 % of the rated current. TYP (0.1 % of rating) for 0 % to 1 %.

12. When the output voltage is 10 % to 100 % of the rating. At the rated output current.

		PWR801L	PWR801ML	PWR801MH	PWR801H		
Voltage dis-	Maximum display	99.99		999.9			
play	Display accuracy	± (0.2 % of reading + 5 digits)					
Current dis-	Maximum display	99.99 9.999					
play	Display accuracy	± (0.5 % of reading + 8 digits)					
Power display		The PWR DSPL LED lights in red.					
	Maximum display	9999					
	Display accuracy	Displays the result of multiplying the current and voltage. The display is toggled with the voltage or current display.					

Display function

Outline drawing

PWR-01 series 800W model outline drawing

Unit mm (inches)

1200W model

This section provides the specifications specific to the 1200W model. For specifications common to all models (Protection functions, Signal output and input, Control functions, Other functions, Operation display, Interface, and General), see "Common Specifications" (*p.* 137).

AC input

		PWR1201L	PWR1201ML	PWR1201MH	PWR1201H		
Nominal input rating	l	100 Vac to 240 Vac, 50 Hz to 60 Hz, single phase					
Input voltage range		85 Vac to 265 Vac					
Input frequency rang	ge	47 Hz to 63 Hz					
Current (TYP) ¹	100 Vac	16.8 A					
	200 Vac	8.4 A					
Inrush current		75 A or less					
Power (MAX) ²		1680 VA					
Power factor (TYP)	1	0.99 (input voltage: 100 V), 0.97 (input voltage: 200 V)					
Efficiency (TYP) ¹		75 %					
Output hold time ²		20 ms or more					

1. At the rated output power for the rated output current.

2. 100 Vac, at the rated output power.

				PWR1201L	PWR1201ML	PWR1201MH	PWR1201H	
Rating	Output voltage ¹		40 V	80 V	240 V	650 V		
	Output current ¹		120 A	60 A	15.0 A	5.55 A		
	Output power			1200 W				
Voltage	Maxir	mum settable v	/oltage ²	42 V	84 V	252 V	682.5 V	
	Settir	ig accuracy		± (0.05 % of se	etting +0.05 % of	rating)		
	Reso	lution		200 mV	400 mV	1000 mV	2500 mV	
		Using FINE,	OUT OFF	10 mV	10 mV	100 mV	100 mV	
		Using FINE,	OUT ON	1 mV	1 mV	10 mV	10 mV	
		When using a interface	a communication	0.1 mV	0.1 mV	0.1 mV	0.1 mV	
	Line	regulation ³		±6 mV	±10 mV	±26 mV	±67 mV	
	Load	regulation ⁴		±6 mV	±10 mV	±26 mV	±67 mV	
	Trans	ient response	5	1 ms or less	2 ms or less	2 ms or less	3 ms or less	
	Rippl	e noise ⁶	р-р ⁷	50 mV	50 mV	100 mV	300 mV	
			rms ⁸	5 mV	5 mV	20 mV	50 mV	
	Rise	time	At full load	50 ms or less		100 ms or less		
			No load	50 ms or less	50 ms or less		100 ms or less	
	Fall ti	me ⁹	At full load	50 ms or less		150 ms	250 ms	
			No load	500 ms or less		1200 ms	2000 ms	
	Maxir satior	num remote so n voltage (sing	ensing compen- le line)	1.5 V	4 V	5 V	5 V	
	Temp	erature coeffic	cient ¹⁰	100 ppm/°C				
Current	Maxir	num settable o	current ²	126 A	63 A	15.75 A	5.8275 A	
	Settir	ng accuracy ¹¹		± (0.5 % of setting +0.1 % of rating)				
	Reso	lution		600 mA	300 mA	60 mA	30 mA	
		Using FINE,	OUT OFF	100 mA	10 mA	10 mA	1 mA	
		Using FINE,	OUT ON	10 mA	1 mA	1 mA	0.1 mA	
		When using a interface	a communication	0.1 mA	0.1 mA	0.1 mA	0.1 mA	
	Line ı	regulation		±14 mA	±8 mA	±3.5 mA	±2.6 mA	
	Load regulation Ripple noise ¹² rms ⁸ Rise time (TYP) At full load		±29 mA	±17 mA	±8.0 mA	±6.1 mA		
			rms ⁸	240 mA	120 mA	36 mA	18 mA	
			At full load	50 ms		100 ms		
	Fall ti	me (TYP)	At full load	50 ms		100 ms		
	Temp	erature coeffic	cient ¹⁰	100 ppm/°C				
Maximum	intern	al resistance t	hat can be set	0.333 Ω	1.333 Ω	12.00 Ω	87.84 Ω	

Output

1. The maximum output voltage and maximum output current are limited by the maximum output power.

2. Can be limited to approximately 95 % of the OVP trip point or OCP trip point.

3. 85 Vac to 135 Vac or 170 Vac to 265 Vac, fixed load

4. The amount of change that occurs when the load is changed from no load to full load (rated output power/ rated output voltage) with rated output voltage. The value is measured at the sensing point.

5. The amount of time required for the output voltage to return to a value within "rated output voltage ± (0.1 % + 10 mV)." The load current fluctuation is 50 % to 100 % of the maximum current with the set output voltage.

6. Measured using an RC-9131C probe that conforms to the JEITA specifications. At the rated output current.

7. When the measurement frequency bandwidth is 10 Hz to 20 MHz.

8. When the measurement frequency bandwidth is 10 Hz to 1 MHz.

9. When the bleeder circuit is set to bleeder normal.

10. When the ambient temperature is within 0° C and 50° C

11. Applies to the range of 1 % to 100 % of the rated current. TYP (0.1 % of rating) for 0 % to 1 %.

12. When the output voltage is 10 % to 100 % of the rating. At the rated output current.

Display function

		PWR1201L	PWR1201ML	PWR1201MH	PWR1201H	
Voltage display	Maximum display	99.99		999.9		
	Display accuracy	± (0.2 % of readi	ng + 5 digits)			
Current display	Maximum display	999.9	99.99		9.999	
	Display accuracy	± (0.5 % of reading + 8 digits)				
Power displ	ay	The PWR DSPL LED lights in red.				
	Maximum display	9999				
	Display accuracy	Displays the result of multiplying the current and voltage. The display is toggled with the voltage or current display.				

Outline drawing

PWR-01 series 1200W model outline drawing

2000W model

This section provides the specifications specific to the 2000W model. For specifications common to all models (Protection functions, Signal output and input, Control functions, Other functions, Operation display, Interface, and General), see "Common Specifications" (*p.137*).

AC input

		PWR2001L	PWR2001ML	PWR2001MH	PWR2001H		
Nominal input rating)	100 Vac to 240 Vac, 50 Hz to 60 Hz, single phase					
Input voltage range		85 Vac to 265 Va	85 Vac to 265 Vac				
Input frequency ran	ge	47 Hz to 63 Hz	47 Hz to 63 Hz				
Current (TYP) ¹	100 Vac	28.0 A					
200 Vac		14.0 A					
Inrush current	•	125 A or less					
Power (MAX) ²		2800 VA					
Power factor (TYP)	1	0.99 (input voltage: 100 V), 0.97 (input voltage: 200 V)					
Efficiency (TYP) ¹		75 %					
Output hold time ²		20 ms or more					

1. At the rated output power for the rated output current.

2. 100 Vac, at the rated output power.

				PWR2001L	PWR2001ML	PWR2001MH	PWR2001H
Rating	Outpu	ut voltage ¹		40 V	80 V	240 V	650 V
	Outpu	ut current ¹		200 A	100 A	25.0 A	9.25 A
	Outpu	ut power		2000 W			I
Voltage	Maxir	num settable v	voltage ²	42 V	84 V	252 V	682.5 V
	Settir	ig accuracy		± (0.05 % of se	tting +0.05 % of	rating)	I
	Reso	lution		200 mV	400 mV	1000 mV	2500 mV
		Using FINE, 0	OUT OFF	10 mV	10 mV	100 mV	100 mV
		Using FINE, 0	OUT ON	1 mV	1 mV	10 mV	10 mV
		When using a tion interface	a communica-	0.1 mV	0.1 mV	0.1 mV	0.1 mV
	Line r	egulation ³		±6 mV	±10 mV	±26 mV	±67 mV
	Load	regulation ⁴		±6 mV	±10 mV	±26 mV	±67 mV
	Trans	ient response	5	1 ms or less	2 ms or less	2 ms or less	3 ms or less
	Ripple		р-р ⁷	50 mV	70 mV	120 mV	350 mV
			rms ⁸	5 mV	5 mV	20 mV	50 mV
	Rise	time	At full load	50 ms or less		100 ms or less	
			No load	50 ms or less		100 ms or less	
	Fall time ⁹ At full loa		At full load	50 ms or less		150 ms or less	250 ms or less
			No load	500 ms or less		1200 ms or less	2000 ms or less
	Maxir pensa	num remote se ation voltage (s	ensing com- single line)	1.5 V	4 V	5 V	5 V
	Temp	erature coeffic	ient ¹⁰	100 ppm/°C			
Current	Maxir	num settable o	current ²	210 A	105 A	26.25 A	9.7125 A
	Settir	ng accuracy ¹¹		± (0.5 % of setting +0.1 % of rating)			
	Reso	lution		1000 mA	500 mA	100 mA	50 mA
		Using FINE, 0	OUT OFF	100 mA	100 mA	10 mA	10 mA
		Using FINE, 0	OUT ON	10 mA	10 mA	1 mA	1 mA
		When using a tion interface	a communica-	0.1 mA	0.1 mA	0.1 mA	0.1 mA
	Line regulation			±22 mA	±12 mA	±4.5 mA	±2.9 mA
	Load	regulation		±45 mA	±25 mA	±10.0 mA	±6.9 mA
	Ripple	e noise ¹²	rms ⁸	400 mA	200 mA	60 mA	30 mA
	Rise	time (TYP)	At full load	50 ms		100 ms	1
	Fall ti	me (TYP)	At full load	50 ms		100 ms	
	Temp	erature coeffic	ient ¹⁰	100 ppm/°C		-	
Maximum	intern	al resistance t	hat can be set	0.200 Ω	0.800 Ω	7.200 Ω	52.70 Ω

Output

1. The maximum output voltage and maximum output current are limited by the maximum output power.

2. Can be limited to approximately 95 % of the OVP trip point or OCP trip point.

3. 85 Vac to 135 Vac or 170 Vac to 265 Vac, fixed load

4. The amount of change that occurs when the load is changed from no load to full load (rated output power/rated output voltage) with rated output voltage. The value is measured at the sensing point.

5. The amount of time required for the output voltage to return to a value within "rated output voltage \pm (0.1 % + 10 mV)." The load current fluctuation is 50 % to 100 % of the maximum current with the set output voltage.

6. Measured using an RC-9131C probe that conforms to the JEITA specifications. At the rated output current.

7. When the measurement frequency bandwidth is 10 Hz to 20 MHz.

8. When the measurement frequency bandwidth is 10 Hz to 1 MHz.

9. When the bleeder circuit is set to bleeder normal.

10. When the ambient temperature is within 0°C and 50 °C

11. Applies to the range of 1 % to 100 % of the rated current. TYP (0.1 % of rating) for 0 % to 1 %.

12. When the output voltage is 10 % to 100 % of the rating. At the rated output current.

Display function

		PWR2001L	PWR2001ML	PWR2001MH	PWR2001H	
Voltage display	Maximum display	99.99		999.9		
	Display accuracy	± (0.2 % of reading + 5 digits)				
Current display	Maximum display	999.9		99.99		
	Display accuracy	± (0.5 % of reading + 8 digits)				
Power display		The PWR DSPL LED lights in red.				
	Maximum display	9999				
	Display accuracy	Displays the result of multiplying the current and voltage. The displa is toggled with the voltage or current display.				

Outline drawing

PWR-01 series 2000W model outline drawing

Unit mm (inches)

Common Specifications

Protection functions

		Common	
Overvoltage protect	tion (OVP)	Turns the output off ¹ , displays OVP, and lights ALM	
Setting range		10 % to 112 % of the rated output voltage	
	Setting accuracy	± (1.5 % of rating)	
Overcurrent protec	tion (OCP) ²	Turns the output off ¹ , displays OCP, and lights ALM	
	Setting range	10 % to 112 % of the rated output current	
	Setting accuracy	± (3 % of rating)	
Front-panel output terminal overcurrent protection (FOCP) ³		Turns the output off ¹ , displays FOCP, and lights ALM	
	Value (fixed)	11 A (TYP)	
Undervoltage limit (UVL)		Cannot be set to a value less than or equal to the set voltage	
	Setting range	0 % to 105 % of the rated output voltage	
Overheat protectio	n (OHP)	Turns the output off, displays OHP, and lights ALM	
Incorrect sensing c (SENSE)	onnection protection	Turns the output off, displays SENS, and lights ALM	
Low AC input prote	ction (AC-FAIL)	Turns the output off, ⁴ displays AC, and lights ALM	
Shutdown (SD)		Turns the output off ¹ , displays SD, and lights ALM	
Power limit (POWE	ER LIMIT)	ALM blinking	
	Value (fixed)	Approx. 105 % of the rated output power	
Communication mo	onitoring (watchdog)	Turns the output off, displays WDOG, and lights ALM	
Master-slave parallel operation protection (PRL ALM)		Turns the output off ¹ , displays PRL, and lights ALM	

1. Output off or breaker trip on the 2000W model.

2. This does not protect against the discharge current peak that is generated from the capacitors inside the PWR-01 output section when the load is changed suddenly.

3. Available on models with a maximum settable current of 11 A or more. If the OCP value is less than the FOCP value, the OCP value takes precedence.

4. Auto recovery after removing the cause of the alarm is selectable.

			Common		
Monitor signal output	Voltage	e monitor (VMON)	Selectable monitor voltage range: 0 V to 5 V or 0 V to 10 V		
		Setting accuracy	2.5 % of f.s. ¹		
	Current	t monitor (IMON)	Selectable monitor voltage range: 0 V to 5 V or 0 V to 10 V		
	Setting accuracy		2.5 % of f.s. ¹		
Status	OUTON STATUS		On when output is on.		
signal output ²	CV STA	ATUS	Turns on during CV operation		
	CC STATUS		Turns on during CC operation		
	ALARM	1 STATUS	Turns on when an alarm has been activated		
	POWER ON STATUS		Turns on when the power is turned on		
Trigger signal	signal Input (TRG IN)		Logic selectable: LOW (0 V to 1.5 V), HIGH (3.5 V to 5 V) Input impedance: 10 k Ω (TYP)		
Out		(TRG OUT)	Logic selectable: LOW (0 V to 0.6 V), HIGH (4.2 V to 5 V) Pulse width: 100 μs (TYP)		

Signal output and input

1. f.s. is the full scale at the selected range. It is 10 V for the 10 V range and 5 V for the 5 V range.

2. Photocoupler open collector output;

maximum voltage 30 V, maximum current (sink) 8 mA; isolated from the output and control circuits; status commons are floating (withstand voltage of less than or equal to 60 V); and status signals are not mutually isolated.

Control functions

			Common
External control	External Output voltage control control (VPGM)		0 % to 100 % of the rated output voltage Selectable control voltage range: 0 V to 5 V or 0 V to 10 V
		Accuracy	5 % of rating
	Output current control (IPGM)		0 % to 100 % of the rated output current Selectable control voltage range: 0 V to 5 V or 0 V to 10 V
		Accuracy	5 % of rating
	Output on/ off control OUTPUT ON/OFF CONT		Logic selectable: Output on when set to LOW (0 V to 0.5 V) or shorted; output off when set to HIGH (4.5 V or 5 V) or open Output on when set to HIGH (4.5 V to 5 V) or open; output off when set to LOW (0 V or 0.5 V) or shorted
	Output shutdown control SHUT DOWN		Output on when set to LOW (0 V to 0.5 V) or shorted
	Alarm clear control ALM CLR		Alarm cleared when set to LOW (0 V to 0.5 V) or shorted

Other functions

		400W model	800W model	1200W model	2000W model	
Output-on/ off of	delay	Setting range: 0.0 s, 0.5 s to 99.9 s ¹ setting resolution: 0.1 s				
Soft start and s	oft stop	Setting range: 0.0) s, 0.5 s to 10.0 s ¹	?setting resolution	n: 0.1 s	
Overcurrent pro activation delay	otection (OCP) /	Setting range: 0.0 s to 2.0 s ¹ ?setting resolution: 0.1 s				
Preset memory	1	Up to three sets of the following settings can be saved: the set voltage, the set current, the set OVP, the set OCP, and the set UVL.				
Key lock		Locks the operation	on of all keys other	than the OUTPU	Γ key.	
CONFIG short	cut	Up to three CONFIG parameters can be registered to the SC1, SC2, and SC3 keys.				
Sequence		Number of programs: 1 Number of steps: 64 Repetition count: 1 to 99998, INFinity Number of configurable interval loops: 16 Number of interval loops: 2 to 99998 Step time: 0.1 s to 100 h (common to step transition and ramp transition)				
Synchronized (Operation	Synchronization of voltage and current settings, synchronization of the resumption of steps in a sequence program				
Master-slave p	arallel operation ²	Up to three units including the mas	(same models) ter unit	Up to two units (s including the mas	ame models) ster unit	
Series operation	n ³	Two units (the same model)				
Multichannel Connection LAN, USB, RS232C between the master unit and PC						
	Connection with slave units	LAN				

1. 2. 3.

Factory default is 0.0 s. Current difference between the master and slaves is 5 % (TYP). H type is excluded.

Operation display

	Common		
OUTPUT ON/ OFF	OUTPUT LED lights green when the output is on.		
Output-on/ off delay	"DLY" lights when it is set and blinks when it is in effect. OUTPUT LED blinks orange while output-on delay is in effect. OUTPUT LED blinks green while output-off delay is in effect.		
Soft start and soft stop	"SS" lights when it is set and blinks when it is in effect. OUTPUT LED lights green when soft start is in effect. OUTPUT LED blinks green when soft stop is in effect.		
CV operation	CV LED lights in green.		
CC operation	CC LED lights in red.		
Alarm operation	ALM LED lights in red when a protection function has been activated. ALM LED blinks red when the power limit (POWER LIMIT) is activated. OUTPUT LED blinks orange when a protection function is activated when the out- put is on.		
Preset memory	PRESET A, B, or C LED lights green when a preset memory entry is being recalled or saved.		
Key lock operation	LOCK LED lights green when the keys are locked.		
Remote operation	REMOTE LED lights green during remote control.		
LAN operation	LAN LED lights or blinks depending on the status. No fault status: Lights green. Fault status: Lights green. Standby status: Lights orange. WEB identify status: Blinks green.		
Bleeder circuit	"HB" lights when the hyper bleeder is set.		
Variable internal resistance (VIR)	• "VIR" lights when it is set.		
Sequence	"SEQ" lights when a sequence is being executed and blinks the PWR-01 is waiting for a trigger.		

140

			•		
- 11	nti	٥r	ta	C	Δ
			ICI		-

		Common		
Common specifications	Software protocol	IEEE Std 488.2-1992		
specifications	Command language	Complies with SCPI Specification 1999.0		
RS232C	Hardware	Complies with the EIA232D specifications (excluding the connector)		
		RJ-45 connector (male) ¹		
		Baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bps		
		Data length: 8 bits, Stop bits: 1 bit, Parity bit: None		
		No flow control		
	Program message terminator	LF during reception, CR/LF during transmission		
USB	Hardware	Complies with the USB 2.0 specifications; data rate: 480 Mbps (HighSpeed)		
		Socket B type		
	Program message terminator	LF or EOM during reception, LF + EOM during transmission		
	Device class	Complies with the USBTMC-USB488 device class specifications		
LAN	Hardware	IEEE 802.3 100Base-TX/ 10Base-T Ethernet Complies with LXI Specification2011 Ver.1.4 Complies with LXI HiSLIP Extended Function Rev.1.01		
		IPv4, RJ-45 connector ²		
	Communication protocol	VXI-11, SCPI-RAW, HISLIP		
	Program message terminator	VXI-11, HiSLIP: LF or END during reception, LF + END during transmission SCPI-RAW: LF during reception, LF during transmission.		

The RD-8P/9P adapter cable is an option. Category 5; use a straight cable. 1. 2.

General

		400W model	800W model	1200W model	2000W model			
Weight (ma	iin unit only)	Approx. 3 kg (6.61 lb)	Approx. 5.5 kg (12.13 lb)	Approx. 7.5 kg (16.53 lb)	Approx. 13 kg (28.66 lb)			
Dimensions	3	See the outline drawing.						
Environ-	Operating environment	Indoor use, overv	oltage category II					
mental	Operating temperature	0 °C to +50 °C (3	2 °F to +122 °F)					
conditions	Operating humidity	20 %rh to 85 %rh	(no condensation)					
	Storage temperature	-25 °C to +60 °C (-13 °F to 140 °F)						
	Storage humidity	90 %rh or less (ne	90 %rh or less (no condensation)					
	Altitude	Up to 2000 m						
Cooling me	thod	Forced air cooling	g using fan					
Grounding	polarity	Negative groundi	ng or positive grou	nding possible				
Isolation vo	ltage	L/ ML/ MH type: ± H type: ±800 Vma	500 Vmax ax					
With- standing	Across the primary circuit and chassis	No abnormalities when 1500 Vac is applied for 1 minute						
voltage	Across the primary and secondary circuits	L/ ML/ MH type: No abnormalities when 1650 Vac is applied for 1 minute H type: No abnormalities when 1900 Vac is applied for 1 minute						
	Across the secondary circuit and chassis	y L/ ML/MH type: No abnormalities when 2300 Vdc is applied for 1 minute H type: No abnormalities when 2640 Vdc is applied for 1 minute						
Insulation resistance	Across the primary circuit and chassis	100 MΩ or more ((70 %rh or less) at	500 Vdc				
	Across the primary and secondary circuits	L/ ML/ MH type: 100 M Ω or more (70 %rh or less) at 500 Vdc H type: 100 M Ω or more (70 %rh or less) at 1000 Vdc						
	Across the secondary circuit and chassis	L/ ML/ MH type: 40 M Ω or more (70 %rh or less) at 500 Vdc H type: 40 M Ω or more (70 %rh or less) at 1000 Vdc						
Accessorie	S	See <i>p</i> .3.						
Electromagnetic compatibility (EMC) ^{1 2}		Complies with the requirements of the following directive and standards. EMC Directive 2014/30/EU EN61326-1 (Class A ³) EN55011 (Class A. ³ , Group 1 ⁴) EN61000-3-2 EN61000-3-3 Applicable under the following conditions The maximum length of all cabling and wiring connected to the product must be less than 3 m.						
Safety ¹		Complies with the requirements of the following directive and standards. Low Voltage Directive 2014/35/EU ² EN61010-1 (Class I ⁵ , Pollution Degree 2 ⁶)						

1. Does not apply to specially ordered or modified products.

Limited to products that have a CE mark. Does not apply unless a core is attached to the J1 connector cable.
 This is a Class A instrument. This product is intended for use in an industrial environment. This product may cause interference if used in residential areas. Such use must be avoided unless the user takes special

measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.

4. This is a Group 1 instrument. This product does not generate and/or use intentionally radio-frequency energy, in the form of electromagnetic radiation, inductive and/or capacitive coupling, for the treatment of material or inspection/analysis purpose.

5. This is a Class I instrument. Be sure to ground this product's protective conductor terminal. The safety of this product is guaranteed only when the product is properly grounded.

6. Pollution is addition of foreign matter (solid, liquid or gaseous) that may produce a reduction of dielectric strength or surface resistivity. Pollution Degree 2 assumes that only non-conductive pollution will occur except for an occasional temporary conductivity caused by condensation.

Appendix

- A Factory Default Settings
- **B** Options
- C Troubleshooting

Factory Default Settings

You can initialize the settings to their factory default conditions.

1 While holding down LOCAL and PWR DSPL, turn the POWER switch on.

2 When the voltmeter on the front panel displays " ان بد" appears, release LOCAL and PWR DSPL.

If you keep holding down the keys when " $_{10,1}$ E" is displayed, the keys will be locked (the LOCK LED will light) (*p.78*).

If the keys are locked (the LOCK LED is lit), you can hold down LOCAL and PWR DSPL again to release the key lock.

The factory default settings are shown below.

Basic settings

144

Basic item	Description		
Output voltage	0 V		
Output current	105 % of the rated output current		
OVP (overvoltage protection)	112 % of the rated output voltage		
OCP (overcurrent protection)	112 % of the rated output current		
UVL (undervoltage limit)	0 V		
Preset memory values A, B, C	Factory default settings (Output voltage, output current, OVP, OCP, UVL)		
CONFIG shortcut SC1, SC2, SC3	No CONFIG parameter registration		
Paramete r number		Description	Description
----------------------	--------	---	---
CF01 ¹	ЬΓΕ	Sets the bleeder circuit	NORM (normal)
CF02	Pr io	Output-on startup state	CV (CV prioritized)
CF03	Цс	Internal resistance setting (VIR)	OFF (internal resistance disabled)
CF04	55.C.r	Soft start time (CC mode)	0.0 (soft start disabled)
CF05	55C.F	Soft stop time (CC mode)	0.0 (soft stop disabled)
CF06	55Ur	Soft start time (CV mode)	0.0 (soft start disabled)
CF07	55.U.F	Soft stop time (CV mode)	0.0 (soft stop disabled)
CF08	on.d	Output-on delay setting	0.0 (no delay)
CF09	oFF.d	Output-off delay setting	0.0 (no delay)
CF10	E.E.C	CC control using an external voltage/ external resistance	OFF (control not used)
CF11	E.C.U	CV control using an external voltage/ external resistance	OFF (control not used)
CF12	Շրոն	CV/ CC control range	LO (0 V to 5 V)
CF13 ¹	Որոն	Voltage/ Current monitor output range	LO (0 V to 5 V)
CF14	Eout	External control for turning output on/ off	OFF (external control not used)
CF15	ELoG	External control logic for turning output on/off	Turns on with LO (0 V to 0.5 V) or short
CF16	5E 5.C	CC status signal polarity	NEG (negative)
CF17	5E 5.U	CV status signal polarity	NEG (negative)
CF18	565.0	Output status signal polarity	NEG (negative)
CF19	5658	Protection function/ alarm status signal polarity	NEG (negative)
CF20 ¹	R-CU	Status when recovering from AC-FAIL protection	SAFE (output not automatically turned on)
CF21	8405	Communication monitoring (WATCHDOG) timer	OFF (timer off)
CF22	CELR	Current setting limit	ON (apply limit)
CF23	CULR	Voltage setting limit	ON (apply limit)
CF24 ¹	oC.dL	Output off after OCP detection	0.0 s
CF25 ^{1, 2}	۲r ،P	Breaker trip when the OVP/ OCP/ FOCP/ SD/ PRL ALM	ON (trip)
CF30	50 1	CONFIG parameter shortcut registration (SC1)	00 (not registered)
CF31	502	CONFIG parameter shortcut registration (SC2)	00 (not registered)
CF32	503	CONFIG parameter shortcut registration (SC3)	00 (not registered)
CF33	ЬЕЕР	Buzzer on/ off	ON (Buzzer on)
CF34 ¹	Ъс і	Panel display brightness	7
CF35	RNEr	Slave unit display during master-slave parallel operation	OFF (not displayed)
CF40	LRn	LAN interface setting	ON (used)
CF41	սՏԵ	USB interface setting	ON (used)
CF42	232	RS232C interface setting	ON (used)
CF43	Frac	SCPI communication error display	OFF (not displayed)
CF44 ¹	PR-R	Master-slave parallel operation	1 (1 unit)
CF45	Pon	Output state at power-on	SAFE (output off)
CF60	եօօէ	LAN setting reset/ apply	LCI (LAN interface setting reset)
CF61	Rdr	IP address assignment method	110 (DHCP: On, AUTO IP: On, MANUAL IP: Off)
CF66	Տսե	IP address subnet mask	16
CF72	bRud	RS232C baud rate	19.2 (kbit/s)
CF80	ProG	Program's user code display (execute)	NONE (not written)
CF83	ЕгБ.,	Trigger input signal polarity	PTR (positive trigger)
CF84	trū.o	Trigger output signal polarity	PTR (positive trigger)

CONFIG settings

You can also specify this parameter when the PWR-01 is being used as a slave unit. Can be set only on the 2000W model. 1. 2.

The PWR-01 has the following options.

For information about options, contact your Kikusui agent or distributor.

Rack mount option

Name	Model	Note	Applicable model
Rack mount adapter	KRA3	For EIA inch racks	400W model
	KRA150	For JIS millimeter racks	1200W model
Rack mount bracket	KRB3-TOS	For EIA inch racks	2000W model
	KRB150-TOS	For JIS millimeter racks	-

Remove the handle and feet before you mount the PWR-01 to a rack.

For information on rack mounting, see the KRA series or KRB series operation manual.

To support the main unit, attach an angle support to it that is appropriate for the rack.

We recommend that you keep all pieces that you remove from the PWR-01. You will need these pieces if you remove the PWR-01 from the rack mount adapter.

When you re-attach the original feet, use the pieces that you removed.

NOTE

To reinstall the handle that has been removed, use screw locking agent (e.g., 1401B by ThreeBond International, Inc.) to prevent screws from loosening.

Removing the handle and feet

400W model/ 800W model/ 1200W model

Remove the two handle covers.

Unfasten the two M4 flat head screws, and remove the entire handle.

Loosen the screws to remove the feet (in four locations).

This completes the removal.

2000W model

Remove the two handle covers.

Unfasten the two M4 flat head screws, and remove the entire handle.

Loosen the screws to remove the feet (in four locations).

Unfasten the internal pins from the feet (four locations) of the side panel using a flat-blade screwdriver, and then remove the feet.

This completes the removal.

3

Δ

Power cord

This is the power cord that is used to connect the product to the AC line.

J1/ J2 connector plug kit OP01-PWR-01

A plug kit for externally controlling the PWR through the J1/ J2 connector.

30 pin pieces Housing for the J1 connector and J2 connector, 1 piece each

Adapter cable (RD-8P/9P)

An adapter cable for connecting a D-sub 9-pin RS232C cable to the product.

Safety plugs

Plugs for connecting to the front-panel output terminals. There are two types.

(screw connection type) Red and black, one set each

Parallel operation cable (OP02-PWR-01)

This cable is used when performing parallel operations. For two units in parallel (one slave unit).

Master side (Blue) Slave side (White) Length: Approx. 400 mm

148

External control cable and connector set (OP03-PWR-01)

A set of cables and connectors used for external control.

Cables 20 pcs., length: approx. 500 mm Housing for the J1 connector and J2 connector, 1 piece each

Terminal unit (TU01-PWR-01)

This terminal unit is used to convert the 20-pin J1 connector and 6-pin J2 connector of the Kikusui PWR-01 Series Regulated DC Power Supply into the 26-pin J1 connector of the PAS or PWR Series Regulated DC Power Supply.

This product makes it easy to transfer the external control of the PAS series or PWR series to the PWR-01 Series.

NOTE

Output voltage (current) external resistance control, one-control parallel operation and series operation cannot be converted. PWR OFF STATUS on the PAS series has been changed to PWR ON STATUS on the PWR-01 series.

Troubleshooting

This section introduces troubleshooting measures. Typical symptoms are listed. Check whether any of the items listed below apply to your case. In some cases, the problem can be solved quite easily.

If none of the items apply to your case, we recommend that you initialize the PWR-01 to its factory default settings (p.144). If the remedy does not correct the problem, contact your Kikusui agent or distributor.

The power does not turn on

Symptom	Items to check	Remedy	See
The PWR-01 does not	Is the power cord broken?	Exchange the power cord with a new one.	p.14
switch is turned on.	Is the power cord connected correctly?	Connect the power cord correctly.	p.14

Unable to perform panel operations

Symptom	Items to check	Remedy	See
Unable to carry out panel	Is the LOCK LED lit?	Release the key lock.	p.78
operations.	Is the REMOTE LED lit?	To control the PWR-01 from the panel, press - the LOCAL key to switch to local mode.	p.80
	Is the PWR-01 being controlled via the RS232C, USB, or LAN interface?		
The PWR-01 does not switch to local mode even when I press the LOCAL key.	Was a local lockout (llo) command sent through the communication interface?	Send the "SYST:LOC" communication command to clear the local lockout (llo) status.	_
Settings are not displayed even when the SET key is pressed.	Is the instrument being controlled externally?	The SET key is disabled when the instrument is being controlled externally.	p.38

Unable to set the output voltage/ current or OVP/ OCP.

Symptom	Items to check	Remedy	See
Unable to set the output voltage or the OVP trip point.	Is the voltage setting limit function enabled (CF23: חם)?	You cannot set the output voltage to a value greater than equal to approximately 95 % of the OVP trip point nor set the OVP trip point to a value less than equal to approximately 105 % of the voltage setting. Disable the setting limit function (CF23: _FF), or check the OVP trip point.	p.68
		You cannot set the output voltage to a value less than the voltage specified by UVL. Disable the setting limit function (CF23: _FF), or check the UVL trip point.	p.59
Unable to set the output current or the OCP trip point.	Is the current setting limit function enabled (CF22: חם)?	You cannot set the output current to a value greater than equal to approximately 95 % of the OCP trip point nor set the OCP trip point to a value less than equal to approximately 105 % of the current setting. Disable the setting limit function (CF22: $_{\Box}FF$), or check the OCP trip point.	p.68

Symptom	Items to check		Remedy	See
No output is generated even when the OUTPUT	Is the output voltage set to 0 V output current set to 0 A?	and the	Turn the knobs to set the output voltage and output current to the required values.	p.40
key is turned on.	Are you using an external	Yes	Use the external contact to turn output on.	p.101
	contact to turn output on and - off?	No	Set the external control for turning output on and off to "off" (CF14: DFF).	p.67
The output turns off immediately even when it is set to on.	Is the overvoltage protection (function activated?	OVP)	Set the OVP value higher than the voltage setting.	p.68
	Is the overheat protection (OH function activated?	P)	The internal temperature is abnormally high. Check the operating conditions. After you have removed the cause of the abnormal temperature, turn the power switch on.	p.55
			The air inlet (louver) may be clogged, or the fan may be broken. Check these items.	_
	Is a shutdown (SD) signal bein applied?	g	Set pin 16 of the J1 connector to HIGH (4.5 V to 5 V) or open.	p.103
The output does not turn on even when the problem that caused the low AC input protection (AC-FAIL) is removed.	Is the status when recovering to FAIL protection (CF20) set to the output state at power-on (C to 노뮤FE?	rom AC- DRFE or CF45) set	Set the status when recovering from AC-FAIL protection (CF20) to $R_{L}E_{D}$ and the output state at power-on (CF45) to $F_{D}FE$ or $R_{L}E_{D}$.	p.68 p.71

No output is generated

The output ripple is large

Symptom	Items to check	Remedy	See
The ripple sometimes becomes large.	Is the input voltage outside the range?	Apply a voltage that is within the input voltage range.	p.125 p.128 p.131
The ripple increased when the PWR-01 was installed in a different location.	Is something nearby generating a strong magnetic or electrical field?	Take measures such as moving the PWR-01 away from the field sources or twisting the cables connected to the PWR-01.	-
The output ripple is large during external control.	Is there a large amount of external voltage noise?	Take measures against noise.	_
The ripple increased when the load cable was changed.	Are the sensing cables connected?	When you are not using remote sensing, connect the sensing short bar.	p.34

Symptom	Items to check	Remedy	See
When the output is on, turning the VOLTAGE knob or CURRENT knob results in unstable output.	Is the operation mode switching from CV to CC or CC to CV?	Change the setting (output voltage or output current) that is limiting the output to a value greater than the present setting. If the setting is at maximum, you must use a power supply that has a larger output voltage or current.	p.49
The output voltage or output current fluctuates.	Are you using master-slave parallel operation?	Compared to independent operation, the performance degrades slightly during master- slave parallel operation.	_
	Are the sensing cables or sensing short bar connected?	When you are not using remote sensing, connect the sensing short bar.	p.34
	Are both the CV and CC LEDs turned on?	If the output is oscillating when you are using remote sensing, insert a capacitor across the load.	p.34
		The circuit may be malfunctioning. Immediately stop using the PWR-01, and have it repaired.	-
	Do the sensing cables or load cables have poor contact, or are the cables broken?	Turn the POWER switch off, and check the wiring.	p.14
	Does the load current have peaks, or is it pulse shaped?	The peak values may be exceeding the set constant current. Increase the set constant current or increase the current capacity.	p.49
The output voltage is offset from the voltage that the PWR-01 was generating when it was turned on.	Has 30 minutes passed since the power was turned on?	Warm up the PWR-01 for at least 30 minutes.	-
The output voltage does not decrease even when the output is turned off.	Is the bleeder circuit (CF01) set to off?	lf the bleeder circuit is set to off (CF01: d יב), the voltage when the output is on remains. Set the bleeder circuit to on (CF01: חבר ה/ hyp).	p.64
The output voltage is offset from the voltage	Is the internal resistance setting (CF03) set to a value other than off?	Set the internal resistance to off (CF03: _FF).	p.65 p.84
setting.	Is there any loose screw on the sensing short bar?	Be sure to securely connect the sensing short bar using the sensing terminals screws and the screws on the rear-panel DC OUTPUT terminals.	p.34

The output is unstable

Symptom	Items to check	Remedy	See
The ALM LED lights when the OUTPUT key is turned	Are the sensing cables or sensing short bar connected?	When you are not using remote sensing, connect the sensing short bar.	p.34
on.	Are the polarities of the sensing cables connected in reverse?	The polarities of the sensing cables may be connected in reverse, or the ends of the cables may be shorted. Check them.	p.34
	Are you using remote sensing with long load cables?	Keep the voltage drop in the load cables within the compensation voltage range.	p.34
	Are you using external control with a loose control cable?	Connect the cable correctly.	p.91
	Is the external voltage excessive during external control?	Apply the correct voltage.	p.97 p.99
	Is the internal temperature too high?	The overheat protection function has been activated. Check the operating environment.	p.55 p.137
		The louver may be clogged, or the fan may be broken. Check these items.	p.122
The ALM LED lights when the load is changed.	Is a large external voltage—such as that of a battery load—being applied?	The overvoltage protection function or the overcurrent protection function may have been	p.19 p.52
	Is the actual output voltage higher than the set voltage that is displayed on the panel?	activated. Check them. The PWR-01 may be overloaded. Check the load.	
	Is a special load connected?	-	

The ALM LED lights when the OUTPUT key is turned on.

Unable to perform remote control

Symptom	Items to check	Remedy	See
Remote control through the communication interface cannot be performed.	Is the communication interface you want to use turned on in CONFIG settings?	Select the remote control communication interface (CF40/ CF41/ CF42).	p.70
When the LAN interface is in use, the IP address cannot be obtained from the DHCP server.	Is the LAN LED lit in orange or red?	If it is lit in orange, the PWR-01 is waiting for a response from the DHCP server. If it turns red afterward, the PWR-01 may have timed out. Consult your network administrator.	p.73

Unable to control functions properly

Symptom	Items to check	Remedy	See
The bleeder circuit on/off function does not work.	Are you using master-slave parallel operation or series operation?	When using master-slave parallel operation or series operation, set the bleeder circuit settings (CF01) of all connected units to the same value.	p.64

The fan speed is fast

Symptom	Items to check	Remedy	See
The fan rotates faster than normal when the POWER switch is turned on.	Is the bleeder circuit set to hyper bleeder (CF01: 뉴냌몬)?	If hyper bleeder (CF01: hyP) was specified the last time the POWER switch was turned off, the fan speed will be set to the fastest setting. If necessary, set the bleeder circuit (CF01).	p.64 p.82

This page is intentionally blank.

Index

A

AC-FAIL	56
alarm occurrence	50
alarm signal	51
alarm, clearing	51

B

bleeder circuit	64
breaker requirement	16

С

CC control setting	66
CC mode	47
communication monitoring timer	68
CONFIG shortcut registration	69
constant-current mode	47
constant-current power supply	47
constant-voltage mode	47
current monitoring, range	66
current setting limit	68
CV control setting	66
CV mode	47
CV/CC control range	66

F

firmware version	
FOCP	

I

installation	
breaker selection	
IP address assignment	
AUTO IP	73
MANUAL IP	
using DHCP server	73
IP address display	71
IP address prefix	

J

J1	connector pin arrangement	 93
J2	connector pin arrangement	 94

K

key lock function		78	3
-------------------	--	----	---

L

LAN interface	70
LAN interface, applying settings	72
LAN interface, resetting	72

Μ

MAC address display 72
MANUAL IP setting (IP address manual) 73
memory function
multichannel (VMCB)
address74
domain74

0

OCP	53
OCP activation, detection time	68
OHP	55
output	
delay	42
output on and off, external control	67
output on and off, external control logic	67
output-on startup state	64
OVP	52

P

PARALLEL ALM	57
parallel operation	71
POWER LIMIT	59
power-on status	71
product ID display	74
protection function	
communication monitoring	56
front-panel output terminal overcurrent	
protection	55
incorrect sensing connection protection	55
low AC input protection	56
overcurrent protection	53
overheat protection	55
overvoltage protection	52
power limit	59
protection during master-slave parallel operat	ion
	57
shutdown	56
undervoltage limit	59

R

rack mount adapter	146
Rack mount bracket	146
remote interface	. 70
remote sensing	. 34
RS232C interface	. 70
RS232C interface, baud rate	. 75

S

SCPI communication error display SD SENSE	71 56 55
sequence	
loop count	75
remaining time	75
trigger input	76
trigger output	76
user code	75
setting limit	
current setting limit	59
voltage setting limit	58
setting limit, UVL	59
setting limits	41
settings, reset	64

т

troubleshooting	

U

USB interface	
UVL	

V

variable internal resistance function	84
vendor ID display	74
version	2
VMCB (Virtual Multi Channel Bus)	
channel	74, 75
domain	74
voltage monitoring, range	66
voltage setting limit	68

W

WATCHDOG		56
----------	--	----

If you find any misplaced or missing pages in the manuals, they will be replaced. If the manual gets lost or soiled, a new copy can be provided for a fee. In either case, please contact your Kikusui agent or distributor. At that time, inform your agent or distributor of the "Part No." written on the front cover of this manual.

Every effort has been made to ensure the accuracy of this manual. However, if you have any questions or find any errors or omissions, please contact your Kikusui agent or distributor.

After you have finished reading this manual, store it so that you can use it for reference at any time.

KIKUSUI ELECTRONICS CORP.

1-1-3 Higashiyamata, Tsuzuki-ku, Yokohama, 224-0023, Japan

Phone: +81-45-482-6353 Facsimile: +81-45-482-6261

www.kikusui.co.jp/en/

